

Phase 2 Environmental Site Assessment, Parcel 12

Prepared for: Hydro Aluminium Kurri Kurri Pty Ltd

On behalf of:

Prepared by: ENVIRON Australia Pty Ltd

Date: April 2015

Project Number: AS130348

Prepared by: Authorised by:

Name:Kirsty GreenfieldName:Fiona RobinsonTitle:Environmental ScientistTitle:Manager - HunterPhone:02 4962 5444Phone:02 4962 5444

Email: kgreenfield@environcorp.com Email: frobinson@environcorp.com

Signature: Date:21/05/15 Signature: Date:21/05/15

This document is issued in confidence to Hydro Aluminium Kurri Kurri Australia Pty Ltd for the purposes of a Phase 2 Environmental Site Assessment. It should not be used for any other purpose. The scope of the Phase 2 Environmental Site Assessment was based on ENVIRON's proposal dated 18 September 2013.

The report must not be reproduced in whole or in part except with the prior consent of ENVIRON Australia Pty Ltd and subject to inclusion of an acknowledgement of the source. No responsibility is accepted for use of any part of this report in any other context or for any other purpose or by third parties. This report does not purport to give legal advice. Legal advice can only be given by qualified legal practitioners.

Whilst reasonable attempts have been made to ensure that the contents of this report are accurate and complete at the time of writing, ENVIRON Australia Pty Ltd disclaims any responsibility for loss or damage that may be occasioned directly or indirectly through the use of, or reliance on, the contents of this report.

Specific assumptions and limitations identified by ENVIRON as being relevant are set out in the report. The methodology adopted and sources of information used by ENVIRON are outlined in our scope of work. ENVIRON has made no independent verification of this information beyond the agreed scope of works.

This report should be read in full.

© ENVIRON Australia Pty Ltd

VERSION CONTROL RECORD

Document File Name	Date Issued	Version	Author	Reviewer
AS130348 Parcel12_Phase 2_D1	June 2014	Draft 1	K Greenfield	F Robinson
AS130348 Parcel12_Phase	April 2015	Final	K Greenfield	F Robinson
2_Final for Rezoning				

Contents

		Page
1	Introduction	6
1.1	Background	6
1.2	Objectives and Scope of Work	6
2	Site Description	7
2.1	Site Location	7
2.2	Site Setting	8
2.2.1	Topography	8
2.2.2	Regional Geology	8
2.2.3	Site Hydrology	8
2.2.4	Regional Hydrogeology	8
2.3	Site Sensitivity	9
3	Site History	10
4	Sampling and Analytical Quality Plan	10
4.1	Potential Areas and Contaminants of Concern	10
4.2	Data Quality Objectives and Data Quality Indicators	10
4.3	Sampling Design	11
4.3.1	Fluoride	11
4.3.2	Asbestos	11
4.3.1	Potential Fill	12
5	Basis for Assessment Criteria	13
5.1	Soil	13
6	Results	17
6.1	Site Walkover	17
6.2	Soil Investigations	17
6.2.1	Fluoride and Asbestos	17
6.2.1	Potential Fill	18
6.3	Soil Results	18
6.4	Quality Assurance/ Quality Control	19
7	Site Characterisation	20
7.1	Conceptual Site Model	20
8	Conclusions and Recommendations	21
9	References	23
10	Limitations	24
10.1	User Reliance	24

List of Figures

Figure 1: Site Location Plan

Figure 2: Location of Parcel 12 on the Masterplan Figure 3: Site Layout and Surface Soil Locations

List of Tables

Table 1: Lot and Development Plans for Parcel 12.

Table 2: Soil Assessment Criteria (mg/kg) – Health and Ecological Investigation

Levels

Table 3: Soil Assessment Criteria for Vapour Intrusion - HSL A & HSL B (mg/kg) -

Sand

Table 4: ESLs and Management Limits for Petroleum Hydrocarbons in Soil Table 5: Health Screening Level for Asbestos Contamination in Soil (w/w)

Table 6: Site Specific Soil Assessment Criteria for Fluoride

Table 7: Summary of Soil Results

List of Appendices

Appendix A: Surrounding Groundwater Bores

Appendix B: Site Photographs

Appendix C: Field Information Sheets

Appendix D: Results Tables
Appendix E: Laboratory Reports
Appendix F: QA/QC Assessment

Appendix G: Hazardous Materials Audit

Acronyms and Abbreviations

ACM Asbestos Containing Materials AHD Australian Height Datum ALS Australian Laboratory Services

ANZECC Australian and New Zealand Environment and Conservation Council

B(a)P Benzo(a)pyrene BGL Below Ground Level

BTEX Benzene, Toluene, Ethylbenzene & Xylenes (Monocyclic aromatic Hydrocarbons)

CT Certificate of Title

DEC NSW Department of Environment and Conservation, now EPA

DP Deposited Plan
DQI Data Quality Indicator
DQO Data Quality Objective

EIL Ecological Investigation Level

EPA NSW Environment Protection Authority

ESA Environmental Site Assessment

F Fluoride

GMU Groundwater Management Unit GPS Global Positioning System

Ha Hectare

HIL Health Investigation Level
HSL Health Screening Level
HRA Health Risk Assessment

km Kilometres LOR Limit of Reporting

m Metres

Mercury Inorganic mercury unless noted otherwise

Metals As: Arsenic, Cd: Cadmium, Cr: Chromium, Cu: Copper, Fe: Iron, Ni: Nickel, Pb: Lead, Zn:

Zinc, Hg: Mercury, Se: Selenium

mg/kg Milligrams per Kilogram mg/L Milligrams per Litre

m AHD Metres relative to the Australian Height Datum

m BGL Metres below ground level Metres below top of casing ML Megalitre, one million litres mg/L Micrograms per Litre

NATA National Association of Testing Authorities

NC Not Calculated ND Not Detected

NEHF National Environmental Health Forum
NEPC National Environment Protection Council
NEPM National Environment Protection Measure
NHMRC National Health and Medical Research Council

NSW New South Wales n Number of Samples

OH&S Occupational Health & Safety
PAH Polycyclic Aromatic Hydrocarbons

PQL Practical Quantitation Limit
QA/QC Quality Assurance/Quality Control
RPD Relative Percent Difference
TRH Total Recoverable Hydrocarbons

UCL Upper Confidence Limit

US EPA United States Environment Protection Authority

µg/L Micrograms per Litre

VENM virgin excavated natural material

- On tables is "not calculated", "no criteria" or "not applicable"

Executive Summary

This report presents the findings of a Phase 2 Environmental Site Assessment undertaken on part of the Hydro Aluminium Kurri Kurri (Hydro) owned land known as Parcel 12. Parcel 12 is a rural property comprising approximately 4.3ha and is accessed from McLeod Road, Loxford and located within the buffer zone and to the south east of the Hydro Aluminium Kurri Kurri Smelter. Parcel 12 comprises three residential properties, with cleared open grassland at the rear of each property.

The objectives of this assessment were to assess the potential for contamination at Parcel 12 based on historical and current landuse and to assess the suitability of Parcel 12 for the purposes of low rural residential (R2) and rural landscape (RU2) land use.

A Phase 1 Environmental Site Assessment has previously been completed for the Hydro owned lands including Parcel 12 (ENVIRON (22 October 2013) Phase 1 ESA, Hydro Kurri Kurri Aluminium Smelter). The Phase 1 identified that contamination of Parcel 12 may have occurred from dust deposition due to the proximity of the Hydro smelter and from construction or demolition of dwellings constructed with asbestos containing materials and activities of the tenants on these properties.

To assess potential contaminants of concern on Parcel 12, a site walkover was completed and surface soil samples were collected from across the parcel.

The site walkover identified a dwelling and several sheds on each of the three lots located near the northern boundary, street frontage to McLeods Road. The remainder of each lot comprised open grassland with a stand of mature trees present along the south western and part of the south eastern boundaries. Each Lot was fenced. A fenced-off AbiGroup depot was located in the south western portion of Lot 10, comprising three demountable sheds and surface gravels. This depot is associated with the construction of the Hunter Expressway, for which AbiGroup were the contractor. A fenced-off grass plot was also located at the rear of the dwelling on Lot 10.

Surface soil samples from across Parcel 12 were collected and analysed for soluble fluoride. Fluoride results were below the preliminary screening level for residential landuse, which is considered applicable for the proposed rural residential landuse.

The site walkover identified hummocky (uneven and disturbed in appearance) ground at the rear of the three properties where poultry sheds may have been previously constructed. Excavation of this hummocky ground identified a small volume of fill material comprising ash or slag with minor glass and crushed brick. No asbestos containing materials (ACM) were identified within the fill material excavated and no soil contamination associated with heavy metals, or hydrocarbons was identified.

Three small ACM fragments were collected for analysis from hummocky ground on Lot 10 during the site walkover. These fragments were confirmed by the laboratory to contain chrysotile and crocidolite asbestos. No further ACM fragments were identified on the surface of Parcel 12.

The dwellings and associated sheds were assessed separately in a Hazardous Materials Audit, which identified asbestos containing building materials in the dwellings on Lot 10, 11 and 12.

Parcel 12 is suitable for the purposes of low rural residential (R2) and rural landscape (RU2) land use.

Hydro has separately engaged a NSW EPA-accredited Site Auditor to issue a Site Audit Statement certifying that the site is suitable for the proposed use.

ENVIRON makes the following recommendations:

- In the event that further ACM fragments are identified on the surface of Parcel 12, these fragments should be collected by Hydro personnel in a suitable plastic bag for collection and appropriate disposal;
- An Unexpected Finds protocol should be implemented during future development works to deal with potential buried wastes that may exist on Lot 12.

1 Introduction

1.1 Background

This report presents the findings of a Phase 2 Environmental Site Assessment undertaken on part of the Hydro Aluminium Kurri Kurri Pty Limited (Hydro) owned land known as Parcel 12. Parcel 12 is located off McLeod Road, Loxford, New South Wales (2326). The location of Parcel 12 is shown in **Figure 1**.

The work has been performed at the request of Hydro Aluminium Kurri Kurri Pty Limited (the "Client").

Hydro is currently evaluating options for the divestment of land parcels for a range of proposed uses following the closure of the smelter in May 2014. A Rezoning Masterplan has been developed that identifies Parcel 12 to comprise land suitable for low rural residential (R2) and rural landscape (RU2) land use.

A Phase 1 Environmental Site Assessment has previously been prepared for all Hydro owned lands and evaluated the potential for contamination. The Phase 1 identified that contamination of Parcel 12 may have occurred from dust deposition due to the proximity of the Hydro smelter and from construction/ demolition of dwellings constructed with asbestos containing materials.

It is noted that at the time of the fieldwork, this land parcel was named Employment Land Subarea 12 and as such the soil samples reference this name. The parcel was renamed Parcel 12 during the Rezoning Masterplan process.

The location of Parcel 12 in the context of the Rezoning Masterplan is shown in Figure 2.

1.2 Objectives and Scope of Work

The objectives of the assessment were to assess the potential for contamination at Parcel 12 based on historical and current land use and to assess the suitability of Parcel 12 for the purposes of low rural residential (R2) and rural landscape (RU2) land use.

The scope of work performed to meet the objectives comprised:

- A review of available information relating to land use to assess the potential for soil, groundwater or surface water contamination arising from historic and current activities;
- A review of published geological, hydrogeological and hydrological data to establish the environmental setting and sensitivity;
- Field work comprising:
 - Collection of surface soil samples to provide a coarse grid assessment to assess the potential for dust deposition from the smelter operations;
 - A site walkover to evaluate other potential locations of buried waste or illegal dumping.
- Data interpretation including comparison against relevant guidelines and a discussion of the findings in terms of human health and environment risk under the current and future land use scenarios.

 Review of options available for remediation or management to render Parcel 12 suitable for the proposed land use.

2 Site Description

2.1 Site Location

Parcel 12 is owned by Hydro Aluminium Kurri Kurri Pty Limited and is located approximately 35km north west of the city of Newcastle and 150km north of Sydney, in New South Wales, Australia. The address of Parcel 12 is McLeod Road, Loxford, New South Wales, Australia. The location of Parcel 12 is shown in **Figure 1**.

Parcel 12 is located within the Buffer Zone of the Hydro Aluminium Kurri Kurri Smelter, south east of the smelter. The Buffer Zone is an area of land surrounding the smelter that provides a buffer between the smelter and surrounding communities. The site comprises three residential properties, each with a dwelling and associated sheds. The rear of each property is cleared open grassland. Parcel 12 drains to Swamp Creek, located approximately 100m west of the site.

Parcel 12 is located within the Cessnock Local Government Area and is zoned RU2 – Rural Landscape under the Cessnock Local Environment Plan.

Parcel 12 is approximately 4.3 hectares (ha) and comprises the lot numbers and deposited plans (DP) listed in **Table 1**:

Table 1: Lot and Deposited Plans for Parcel 12.				
Subarea	Lot/ DP	Area (ha)	Total Area (ha)	
Parcel 12	Lot 10 DP1082569 Lot 11 DP1082569 Lot 12 DP1082569	2.1 1.1 1.1	4.3	

Land uses surrounding Parcel 12 are as follows:

- North: Rural residential properties;
- South: The Hunter Expressway and sewerage treatment works surrounded by bushland;
- East: Bushland;
- West: Rural residential properties and bushland.

Parcel 12 is located approximately 850m to the south east of the smelter site boundary.

2.2 Site Setting

2.2.1 Topography

Parcel 12 is located in a low lying area of the Buffer Zone at approximately 12 mAHD. The main entrance off McLeod Road to Parcel 12 extends along its north eastern boundary and is the highest point on the site. The natural topography slopes to the south west towards Swamp Creek, located approximately 100m west of the site boundary.

2.2.2 Regional Geology

According to the review of the regional geology described on the Sydney Basin Geological Sheet, Parcel 12 is underlain by siltstone, marl and minor sandstone from the Permian aged Rutherford Formation (Dalwood Group) in the Sydney Basin.

Undifferentiated Quaternary alluvium occurs on the surface of Parcel 12 associated with surface water bodies. Quaternary sediments which are associated with Swamp Creek (located approximately 100m west of the site) and the Hunter River consist of gravel, sand, silt and clay.

2.2.3 Site Hydrology

Surface water from Parcel 12 discharges primarily via infiltration and overland flow to Swamp Creek, located approximately 100m west of the site. Swamp Creek discharges into Wentworth Swamp, which in turn discharges to the Hunter River approximately 11km northeast of Parcel 12 near Maitland.

The Wentworth Swamp system is within the Fishery Creek Catchment, where declining stream water quality and a reduction in diversity of native plants and animals has occurred due to population growth and development pressures in the last ten years (Hunter-Central Rivers Catchment Management Authority).

2.2.4 Regional Hydrogeology

Regional groundwater is expected to follow topography and flow northeast towards the surface water bodies that discharge to the Hunter River. Locally, groundwater beneath Parcel 12 is expected to flow west to Swamp Creek located approximately 100m west of the site.

According to the NSW Office of Environment and Heritage (Natural Resource Atlas), there are 21 licensed groundwater abstractions (bores) located within 2km of Parcel 12. The majority of the groundwater bores are located within the aluminium smelter and buffer zone.

Information for 11 bores located in a 1km radius from Parcel 12 has been included in Appendix A. The bores are used for monitoring purposes. No further information, such as depth to water or logging information was provided.

The Hunter River Alluvium Groundwater Management Unit (GMU) is an important groundwater resource to the region. Groundwater extraction for irrigation, urban supply, drought supply, stock, domestic and commercial/ industrial use occurs, with volumes in excess of 10,000ML per annum extracted from the Hunter River Alluvium GMU. Aquifer storage and recovery is also an important use of this GMU. It is noted that the Hunter River GMU is not the primary drinking water supply in the region, although the protection of

drinking water is a water quality objective for the Hunter River (NSW Water Quality and River Flow Objectives) (www.environment.nsw.gov.au/ieo/Hunter/index.htm).

2.3 Site Sensitivity

The sensitivity of Parcel 12 with respect to surface water and groundwater is considered to be moderate based on the following:

- Surface water and groundwater discharge into Swamp Creek, located approximately 100m west of the site, which discharges to the Hunter River via Wentworth Swamp within the Fishery Creek Catchment, approximately 11km northeast of Parcel 12 near Maitland.
- Declining stream water quality and a reduction in diversity of native plants and animals has occurred within the Fishery Creek Catchment and water quality down gradient of Parcel 12 has been impacted by historical coal mining;
- The Hunter River GMU is used for irrigation, urban supply, drought supply, stock, domestic and commercial/ industrial use but it is not the main drinking water supply in the region.

3 Site History

Site history investigations included in the Phase 1 ESA for the Hydro Aluminium Kurri Kurri Smelter, dated 22 October 2013 provided the following historical information about Parcel 12:

- Earliest records (aerial photograph in 1951) shows that Parcel 12 comprised unknown developments on Lots 10, 11 and 12. The photograph indicates that the extent of the development on each lot is greater than the present day extent.
- Aerial photographs indicate that the three lots were re-developed for residential landuse with a dwelling constructed on each lot in the early 1970s. The dwellings are located close to the north eastern boundary adjacent to McLeod Road.
- Historical aerial photographs indicate the dwellings remain on site to the present day.
 The remainder of each lot comprises vacant cleared land.
- Parcel 12 is located approximately 700m south east of the smelter boundary and may be impacted from smelter dust deposition.

The locations of the current dwellings are included in **Figure 3**. Photos are presented in **Appendix B**.

4 Sampling and Analytical Quality Plan

4.1 Potential Areas and Contaminants of Concern

Based on Parcel 12 historical information as discussed in **Section 3**, the following areas of concern were identified:

- Unknown developments on Lots 10, 11 and 12 that were demolished;
- Smelter dust deposition.
- Illegal dumping.

Contaminants of concern associated with the range of previous site activities are:

- Asbestos;
- Fluoride.

4.2 Data Quality Objectives and Data Quality Indicators

Data quality objectives (DQOs) and Data Quality Indicators (DQIs) were developed by ENVIRON using the US EPA seven-step DQO process. Completing the seven-step process helps to define the purpose of the assessment and the type, quality and quantity of data needed to inform decisions relating to the assessment of site contamination.

The seven-step DQO process and DQIs are included in **Appendix F**.

4.3 Sampling Design

The sampling design was optimised following the development of DQOs and DQIs. The sampling design is outlined below. ENVIRON notes that the historical site activities indicate potential contamination to surface soils only. Where fill was identified during the site walkover, a second round of field investigations was completed to assess subsurface soils. No potential contamination sources to surface water or groundwater have been identified.

4.3.1 Fluoride

To assess the potential for fluoride in soil from dust deposition from the Hydro Aluminium Kurri Kurri Smelter, surface soil samples were collected at a rate of one sample per 5ha.

The sample density is lower than that suggested in Table A of NSW EPA (1995) Contaminated Sites: Sampling Design Guidelines. The density is considered adequate for the purposes of this investigation for the following reasons:

- aerial dust deposition is likely to be relatively consistent over the surface of the parcel and therefore sampling on a low density will allow for identification of whether or not dust deposition is an issue; and
- in the event that elevated or variable fluoride concentrations are identified, additional sampling will be completed.

Samples were collected by trowel from surface soils on an approximate grid across open areas of Parcel 12. Sample locations were logged by GPS.

Soil samples were placed into laboratory-supplied paper bags and stored in an ice-filled cooler for transportation to the laboratory. Soil samples were transported to the laboratory under chain of custody conditions. Intra-laboratory duplicate soil samples were collected at a rate of 10%.

Soil samples were analysed for soluble fluoride, as this is the portion of total fluoride that is available for uptake in receptors including biota, flora, fauna and humans. The laboratory was NATA accredited for the analysis.

4.3.2 Asbestos

To assess the potential for asbestos and other illegally dumped wastes to be present at Parcel 12, a site walkover of accessible areas was completed.

The location and type of dumped wastes were detailed on Field Information Sheets and logged by GPS. Where asbestos was confidently identified by the field personnel, no sampling was completed. If not, a sample of potential asbestos containing material (ACM) was collected for laboratory analysis. ACM fragments were collected into a zip-lock bag using dedicated disposable gloves.

ACM fragments were analysed for asbestos identification by a laboratory NATA accredited for the analysis.

4.3.1 Potential Fill

The site walkover identified the potential for fill material at Parcel 12. As such, a second round of fieldwork was completed to assess the potential fill material and its potential for contamination. ENVIRON note that intrusive investigations could not be completed on Lot 12 due to access issues with the tenant.

A back hoe was used to excavate 14 test pits into areas of potential fill identified at Parcel 12. The test pits were logged by an ENVIRON environmental scientist and soil samples were collected for analysis.

Soil samples were collected into laboratory-supplied acid-rinsed glass jars using dedicated disposable gloves. The soil samples were stored in an ice-filled cooler for transportation to the laboratory. Soil samples were transported to the laboratory under chain of custody conditions. Intra-laboratory duplicate soil samples were collected at a rate of 10%.

Soil samples were analysed for a range of potential contaminants, including heavy metals, total recoverable hydrocarbons (TRH), polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs), organophosphorous pesticides (OPPs) and asbestos. The laboratory was NATA accredited for the analysis.

5 Basis for Assessment Criteria

5.1 Soil

The criteria proposed for the assessment of soil contamination were sourced from the following references:

• NEPC (2013) National Environmental Protection (Assessment of Site Contamination) Amendment Measure 2013 (No. 1) (NEPM).

The variation to the National Environmental Protection (Assessment of Site Contamination) Measure (NEPM 2013) was approved on 19 June 2013 by the NSWEPA under the *Contaminated Land Management Act 1997*. NEPM (2013) provide revised health-based soil investigation levels (HILs) and ecological-based investigation levels (EILs) for various land uses, as follows:

- HIL A residential with garden/accessible soil (home grown produce <10% fruit and vegetable intake, (no poultry), also includes children day care centres, preschools and primary schools
- HIL B residential with minimal opportunities for soil access includes dwellings with fully and permanently paved yard space such as high-rise buildings and flats
- HIL C public open space such as parks, playgrounds, playing fields (e.g. ovals), secondary schools and footpaths. It does not include undeveloped public open space (such as urban bushland and reserves) which should be subject to a site-specific assessment where appropriate
- HIL D commercial/industrial such as shops, offices, factories and industrial sites.

The NEPM 2013 also introduces health-based and ecological screening levels and management limits for petroleum hydrocarbons (HSLs and ESLs). The levels have been derived from recent assessments that more accurately define the exposure mechanisms and risks from sites contaminated with petroleum hydrocarbons.

The objective of the Phase 2 ESA is to assess soil contamination at Parcel 12 in relation to risks posed to human health and the environment under the proposed future land use of rural residential. As such, soil investigation results will be compared against the HIL/HSL Residential A (low density residential), management limits and EILs/ESLs for urban residential/public open space.

- The HILs are applicable for assessing human health risk via all relevant pathways of exposure. The HILs are generic to all soil types and apply generally to a depth of 3 m below the surface for residential use.
- HSLs for soil vapour intrusion from petroleum hydrocarbons guidelines that prevent accumulation of vapours at concentrations that may represent a health risk. The HSLs are derived for various depths and are for the same generic land uses as for the HILs. The guidelines are relevant were soils are beneath building or structures such as confined spaces.

- EILs for urban residential/ public open space, applicable for assessing risk to terrestrial ecosystems. EILs depend on specific soil physicochemical properties and generally apply to the top 2 m of soil.
- ESLs for urban residential/ public open space, developed for selected petroleum hydrocarbon compounds and fractions and are applicable for assessing risk to terrestrial ecosystems. These are also generally applicable to the top 2m of soil.
- Management Limits where concentrations above these limits may indicate poor aesthetics, high odour and potentially explosive vapour. Management limits are to be applied after consideration of relevant ESLs and HSLs.

The applicable assessment criteria for heavy metals and PAHs in soil are presented in Table 2:

Table 2: Soil Assessment Criteria (mg/kg) – Health and Ecological Investigation Levels				
	HIL A	EIL		
Arsenic	100	100		
Cadmium	20	-		
Chromium (VI)	100	190 (Cr III, 1% Clay)		
Copper	6000	60		
Lead	300	1100		
Nickel	400	30		
Zinc	7,400	70		
Mercury (inorganic)	40	-		
Fluoride	Ref Table 5	-		
Carcinogenic PAHs (as BaP TEQ)	3	-		
Total PAHs	300	-		

¹ EILs represent the most conservative value possible as the lowest value for added contaminant limit (ACL) was used and the ambient background concentration (ABC) was not added, with the exception of zinc and copper, where the EIL was calculated by adding the ACL with the estimated ABC using the NEPM (2013) EIL Calculation Spreadsheet as shown in Appendix B.

The applicable assessment criteria for petroleum hydrocarbons in soil are presented in Table 3 and Table 4:

Table 3: Soil Assessment Criteria for Vapour Intrusion - HSL A & HSL B (mg/kg) - Sand				
	0 to <1m	1m to <2m	2m to <4m	4m+
Toluene	160	220	310	540
Ethylbenzene	55	NL	NL	NL
Xylenes	40	60	95	170
Naphthalene	3	NL	NL	NL
Benzene	0.5	0.5	0.5	0.5
F1(4)	45	70	110	200
F2(5)	110	240	440	NL

- 1 Land use settings are equivalent to those described in Section 5.1 (above). HSLs for vapour intrusion for high density residential assume residential occupation of the ground floor. If communal car parks or commercial properties occupy the ground floor, HSL D should be used.
- 2 The soil saturation concentration (Csat) is defined as the soil concentration at which the porewater phase cannot dissolve any more of an individual chemical. The soil vapour that is in equilibrium with the porewater will be at its maximum. If the derived soil HSL exceeds Csat, a soil vapour source concentration for a petroleum mixture could not exceed a level that would result in the maximum allowable vapour risk for the given scenario. For these scenarios, no HSL is presented for these chemicals and the HSL is shown as 'not limiting' or 'NL'.
- 3 (For soil texture classification undertaken in accord with AS 1726, the classifications of sand, silt and clay may be applied as coarse, fine with liquid limit <50% and fine with liquid limit>50% respectively, as the underlying properties to develop the HSLs may reasonably be selected to be similar. Where there is uncertainty, either a conservative approach may be adopted or laboratory analysis should be carried out.
- 4 To obtain F1 subtract the sum of BTEX concentrations from the C6-C10 fraction.
- 5 To obtain F2 subtract naphthalene from the >C10-C16 fraction.

TPH fraction	Soil texture	ESLs (mg/kg dry soil)	Management Limits ¹ (mg/kg dry soil)	
		Urban residential and public open space	Residential, parkland and public open space	
F1 C6- C10	Fine	180*	800	
F2 >C10-C16	Fine	120*	1000	
F3 >C16-C34	Fine	1300	3500	
F4 >C34-C40	Fine	5600	10000	
Benzene	Fine	65	-	
Toluene	Fine	105	-	
Ethylbenzene	Fine	125	-	
Xylenes	Fine	45	-	
Benzo(a)pyrene	Fine	0.7	-	

¹ Management limits are applied after consideration of relevant ESLs and HSLs.

The HSLs for asbestos are applicable for assessing human health risk via the exposure pathway of inhalation of airborne asbestos and are presented in **Table 5**. The HSLs are generic to all soil types.

Table 5. Health screening levels for asbestos contamination in soil Health Screening Level (w/w)					
Form of asbestos	Residential Residential Recreational Commercial A ¹ B ² C ³ Industrial D ⁴				
Bonded ACM	0.01%	0.04%	0.02%	0.05%	
FA and AF ¹ (friable asbestos)	0.001%				
All forms of asbestos	No visible asbestos for surface soil				

² Separate management limits for BTEX and naphthalene are not available hence these should not be subtracted from the relevant fractions to obtain F1 and F2.

³ ESLs are of low reliability except where indicated by * which indicates that the ESL is of moderate reliability.

⁴ To obtain F1, subtract the sum of BTEX from C6-C10 fraction and subtract naphthalene from >C10-C16 to obtain F2.

1. The screening level of 0.001% w/w asbestos in soil for FA and AF (i.e. non-bonded/friable asbestos) only applies where the FA and AF are able to be quantified by gravimetric procedures. This screening level is not applicable to free fibres. NEPM (2013) do not provide criteria for fluoride in soils in Australia. Therefore, ENVIRON (2013) conducted a preliminary level Human Health Risk Assessment (HRA) specific to fluoride in order to derive a specific preliminary screening level for fluoride for the Hydro Aluminium Kurri Kurri Smelter . The screening levels are protective of the range of human receptors and are provided in **Table 6**:

Table 6: Site Specific Soil Assessment Criteria (mg/kg) for Fluoride			
Preliminary screening levels			
Land Use Preliminary screening level			
Residential landuse	F 440mg/kg		
Recreational landuse F 1200mg/kg			
Commercial/ industrial landuse F 17000mg/kg			

Soil investigation results for the samples taken from a grid formation across Parcel 12 have been compared against the residential land use screening level. The fluoride 'residential land use' screening level is considered to be suitably protective of both 'residential' and 'rural residential' land use because the exposure pathways (including vegetable ingestion) and behavioural assumptions (e.g. soil ingestion rate) for the child are considered to be identical under residential and rural residential land use scenarios.

There is a possibility that the rural plots may contain a low density of domestic livestock such as poultry and goats, however there is limited evidence of fluoride accumulation in milk and edible tissues of animals fed high levels of fluorides (ATSDR, 2003; NAS, 1971). Rather, fluoride accumulates primarily (up to approximately 99%) in the skeletal tissues of terrestrial animals that consume fluoride-containing foliage (WHO, 1997; ATSDR, 2003). This assumption is supported by site-specific data collected during the 29th annual cattle survey conducted in March 2012 on cattle located within the site's buffer zone, and surrounding areas (AECOM, 2013). The results of this survey concluded that cattle has had little or no exposure to excess environmental fluoride; skeletal fluoride levels decreased compared to 2011 levels, with all fluoride measurements below the toxic threshold; and all cattle examined were in good health and body condition. Consequently, the residential screening level is considered to be suitably protective of rural residential land use that may contain a low density of domestic livestock.

Consistent with the guidance provided in the NEPM, the data was assessed against the above adopted site guidelines by:

- Comparing individual concentrations against the relevant guidelines and if discrete samples are in excess of the relevant guideline then;
- Comparing the 95% upper confidence limit (UCL) of mean against the relevant guideline also ensuring that:
 - the standard deviation of the results is less than 50% of the relevant investigation or screening level, and
 - o no single value exceed 250% of the relevant investigation or screening level.

6 Results

6.1 Site Walkover

A site walkover was completed to identify areas of environmental concern, such as illegally dumped wastes and fill at Parcel 12. The entrance to Parcel 12 is from McLeod Road, which borders the northern boundary. The site comprises three rural residential lots, Lots 10, 11 and 12, with a dwelling and several sheds on each lot located near the northern site boundary. The remainder of each lot comprised open grassland and a section of mature trees along the south western boundary. Each lot slopes gently towards the south western site boundary. A fenced-off AbiGroup depot was located in the south western portion of Lot 10, comprising three demountable sheds and surface gravels. This depot is associated with the construction of the Hunter Expressway. A fenced-off grass plot was also located at the rear of the dwelling on Lot 10.

The dwellings and associated sheds were assessed separately in a Hazardous Materials Audit, a copy of which is included in **Appendix G**.

The site walkover identified hummocky ground on the western portion of each lot in the cleared grassed land at the rear of each dwelling. The hummocky ground was identified as elevated areas of land suspected to be the location of former poultry sheds. One ACM fragment and metal scrap on the land surface was observed at two of these locations.

The tenant from Lot 12 reported in the 1980s, sheds at the rear of the property were demolished and demolition waste was buried in the area. During rain events following this, scrap metal and other waste would rise to the land surface. The tenant indicated that concrete has been used to seal the area of ground filled with demolition waste in the paddock immediately adjacent to the dwelling. This paddock now comprises a shed to house goats and grassed land. The use of concrete to bury demolition waste was not evident from the land surface.

The locations of hummocky ground identified during the field investigations are shown in **Figure 3**. Photographs are included in **Appendix B**. Field Information Sheets are included in **Appendix C**.

6.2 Soil Investigations

6.2.1 Fluoride and Asbestos

Three surface soil samples were collected from across Parcel 12 as per the sampling design to assess the potential for fluoride in soil from dust deposition from the Hydro Aluminium Kurri Kurri Smelter as shown in **Figure 3**. A generalised lithology of the surface soils encountered at Parcel 12 is as follows:

Topsoil: Sandy silt, brown, slightly moist.

One fragment of asbestos containing material (ACM) was identified in an area of hummocky ground suspected to be the location of a former poultry shed on Lot 10. This fragment was collected into a zip-lock plastic bag using dedicated disposable gloves for asbestos analysis.

As potential asbestos was identified, a 10m by 10m grid was set up over this area and a walkover screening survey conducted comprising two passes with a 90° directional change between them, as per NEPM (2013). The walkover identified two small ACM fragments within the 10m by 10m grid, which were collected and sent for asbestos analysis with the initial fragment.

6.2.1 Potential Fill

Fourteen test pits were excavated in areas of potential fill on Lots 10 and 11, as shown in **Figure 3**. ENVIRON note that access to Lot 12 was not available at the time of the investigation. In general, the test pits identified minor fill material comprising ash or slag with some crushed brick and glass to a maximum depth of 0.6m bgs. The fill material was underlain by silty sand.

Five representative soil samples were collected from the test pits for analysis. Three samples were analysed for asbestos, two samples were analysed for TPH/BTEX and one sample was analysed for heavy metals.

6.3 Soil Results

A summary of the soil results is presented in **Table 7**. Soil analytical results are presented in **Appendix D** and laboratory reports are included in **Appendix E**.

Analyte	No. of Samples	Maximum Concentration (mg/kg)	No. exceeding Site Criteria	Criteria Exceeded (mg/kg)
Fluoride	3	5	0	-
Arsenic	1	<5	0	-
Cadmium	1	<1	0	-
Chromium	1	7	0	-
Copper	1	16	0	-
Lead	1	<5	0	-
Nickel	1	4	0	-
Zinc	1	31	0	-
Mercury	1	0.2	0	-
BaP TEQ	2	<0.5	0	-
Total PAHs	2	10.6	0	-
Benzene	2	<0.2	0	-
Toluene	2	<0.5	0	-
Ethyl benzene	2	<0.5	0	-
Xylene	2	<0.5	0	-
TRH C6-C10	2	<10	0	-
TRH >C10-C16	2	<50	0	-
TRH >C16-C34	2	<100	0	-
TRH >C34-C40	2	<100	0	-
Asbestos	4	1 – Chrysotile and crocidolite	1	Presence

The results of surface soil sampling for fluoride demonstrate that the conditions at Parcel 12 were not impacted by stack particulate fallout from the Hydro Aluminium Smelter.

The results of the fill sampling indicate that the fill material is not impacted by contamination associated with heavy metals, TRH/ BTEX or PAHs.

Chrysotile and crocidolite asbestos was identified in the ACM fragment collected during the site walkover. No asbestos was detected in samples of fill material.

6.4 Quality Assurance/ Quality Control

A quality assurance assessment for this report is presented in **Appendix F**. An assessment was made of data completeness, comparability, representativeness, precision and accuracy based on field and laboratory considerations, as outlined in NSW DEC (2006) and NSW EPA (2007) guidelines. Overall it is considered that the completed investigation works and the data are of suitable quality to meet the project objectives.

7 Site Characterisation

7.1 Conceptual Site Model

Parcel 12 consists of three residential properties with dwellings and associated sheds located close to the north eastern boundary. Parcel 12 is bounded by McLeod Road to the north, bushland to the east and the new Hunter Expressway to the south and west. The site is located in the south east of the Buffer Zone of the Hydro Aluminium Kurri Kurri Smelter.

Parcel 12 was developed for residential use in the early 1970s, with three residential properties on the parcel. This use remains to the present day. Historical aerial photographs indicate that the parcel was developed prior to the 1970s, with photographs from the 1950s showing an unknown development. The site walkover identified hummocky ground suspected to be the location of former poultry sheds on the western portion of each lot. It is likely that the previous 1950s development was for poultry farming. It is understood from the current tenant that sheds (likely poultry sheds) were demolished on Lot 12 in the 1980s and demolition waste was buried in the area. This waste was then covered with concrete and grassed over. As the location of the buried material is currently beneath a shed and access was not available to Lot 12 during the intrusive investigations, the extent and types of demolition waste was not investigated.

The dwellings and associated sheds were assessed separately in a Hazardous Materials Audit, which identified asbestos containing building materials in the dwellings on Lot 10, 11 and 12.

The hummocky ground suspected to be the location of former poultry sheds was assessed via test pitting. Limited fill material was identified to a maximum depth of 0.6m bgs and comprising ash or slag with minor glass and crushed brick. Representative soil samples from the fill material were analysed and no contamination associated with heavy metals, TRH/BTEX or PAHs was identified.

Three small ACM fragments were identified in an area of hummocky ground suspected to be the location of a former poultry shed on Lot 10. The fragments were collected for laboratory analysis, with chrysotile and crocidolite asbestos identified. No further ACM fragments were identified on the surface of the 10m by 10m grid set up in this area. No buried ACM was identified during the excavation of test pits in this area. Asbestos at Parcel 12 is considered to be limited to minor scattered ACM fragments on the surface of the parcel.

Parcel 12 has not been affected by dust deposition of fluoride from the Hydro Aluminium Kurri Kurri Smelter, with fluoride concentrations in surface soil below the preliminary screening level for residential landuse. It is noted that there is currently no source of aerial fluoride emissions, as the smelter is in a care and maintenance mode.

8 Conclusions and Recommendations

This report presents the findings of a Phase 2 Environmental Site Assessment undertaken on part of the Hydro Aluminium Kurri Kurri (Hydro) owned land known as Parcel 12. Parcel 12 is a rural property comprising approximately 4.3ha and is accessed from McLeod Road, Loxford and located within the buffer zone and to the south east of the Hydro Aluminium Kurri Kurri Smelter. Parcel 12 comprises three residential properties, with cleared open grassland at the rear of each property.

The objectives of this assessment were to assess the potential for contamination at Parcel 12 based on historical and current landuse and to assess the suitability of Parcel 12 for the purposes of low rural residential (R2) and rural landscape (RU2) land use.

A Phase 1 Environmental Site Assessment has previously been completed for the Hydro owned lands including Parcel 12 (ENVIRON (22 October 2013) Phase 1 ESA, Hydro Kurri Kurri Aluminium Smelter). The Phase 1 identified that contamination of Parcel 12 may have occurred from dust deposition due to the proximity of the Hydro smelter and from construction or demolition of dwellings constructed with asbestos containing materials and activities of the tenants on these properties.

To assess potential contaminants of concern on Parcel 12, a site walkover was completed and surface soil samples were collected from across the parcel.

The site walkover identified a dwelling and several sheds on each of the three lots located near the northern boundary, street frontage to McLeods Road. The remainder of each lot comprised open grassland with a stand of mature trees present along the south western and part of the south eastern boundaries. Each Lot was fenced. A fenced-off AbiGroup depot was located in the south western portion of Lot 10, comprising three demountable sheds and surface gravels. This depot is associated with the construction of the Hunter Expressway, for which AbiGroup were the contractor. A fenced-off grass plot was also located at the rear of the dwelling on Lot 10.

Surface soil samples from across Parcel 12 were collected and analysed for soluble fluoride. Fluoride results were below the preliminary screening level for residential landuse, which is considered applicable for the proposed rural residential landuse.

The site walkover identified hummocky (uneven and disturbed in appearance) ground at the rear of the three properties where poultry sheds may have been previously constructed. Excavation of this hummocky ground identified a small volume of fill material comprising ash or slag with minor glass and crushed brick. No asbestos containing materials (ACM) were identified within the fill material excavated and no soil contamination associated with heavy metals, or hydrocarbons was identified.

Three small ACM fragments were collected for analysis from hummocky ground on Lot 10 during the site walkover. These fragments were confirmed by the laboratory to contain chrysotile and crocidolite asbestos. No further ACM fragments were identified on the surface of Parcel 12.

The dwellings and associated sheds were assessed separately in a Hazardous Materials Audit, which identified asbestos containing building materials in the dwellings on Lot 10, 11 and 12.

Parcel 12 is suitable for the purposes of low rural residential (R2) and rural landscape (RU2) land use.

Hydro has separately engaged a NSW EPA-accredited Site Auditor to issue a Site Audit Statement certifying that the site is suitable for the proposed use.

ENVIRON makes the following recommendations:

- In the event that further ACM fragments are identified on the surface of Parcel 12, these fragments should be collected by Hydro personnel in a suitable plastic bag for collection and appropriate disposal;
- An Unexpected Finds protocol should be implemented during future development works to deal with potential buried wastes that may exist on Lot 12.

9 References

AECOM. 2013. Hydro Aluminum – 2012 Annual Environmental Management Review. 2 June 2013;

ANZECC & NHMRC (1992) Australian and New Zealand Guidelines for the Assessment and Management of Contaminated Sites;

ENVIRON (2013) Preliminary Screening Level, Health Risk Assessment for Fluoride and Aluminium, Part of the Kurri Kurri Aluminium Smelter, Hart Road, Loxford;

ENVIRON (2013) Phase 1 ESA, Hydro Kurri Kurri Aluminium Smelter;

Hunter Catchment Management Trust (2000) Wallis and Fishery Creeks Total Catchment Management Strategy;

National Academy of Sciences. 1971a. Biologic effects of atmospheric pollutants: Fluorides. Washington, DC: National Academy of Sciences, National Research Council, Committee on Biologic Effects of Atmospheric Pollutants, 239;

National Environment Protection Council (2013) National Environmental Protection (Assessment of Site Contamination) Amendment Measure (NEPM);

NSW DEC (2006) Guidelines for the NSW Site Auditor Scheme (Second Edition);

NSW DEC (2007) Guidelines for the Assessment and Management of Groundwater Contamination;

NSW DECC (2008) Waste Classification Guidelines;

World Health Organisation (1997) Environmental Health Criteria for Fluorides and Fluorosis. 2nd ed. Internal Technical Report, International Program on Safety, WHO, Geneva.

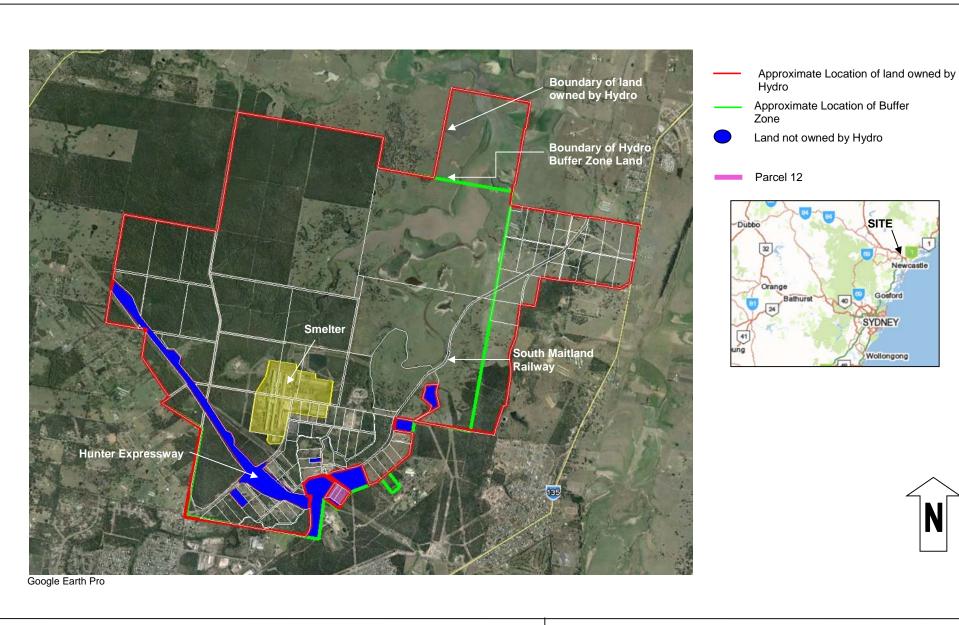
10 Limitations

ENVIRON Australia prepared this report in accordance with the scope of work as outlined in our proposal to Hydro Aluminium Kurri Kurri Pty Ltd dated 18 September 2013 and in accordance with our understanding and interpretation of current regulatory standards.

A representative program of sampling and laboratory analyses was undertaken as part of this investigation, based on past and present known uses of Parcel 12. While every care has been taken, concentrations of contaminants measured may not be representative of conditions between the locations sampled and investigated. We cannot therefore preclude the presence of materials that may be hazardous.

Site conditions may change over time. This report is based on conditions encountered at Parcel 12 at the time of the report and ENVIRON disclaims responsibility for any changes that may have occurred after this time.

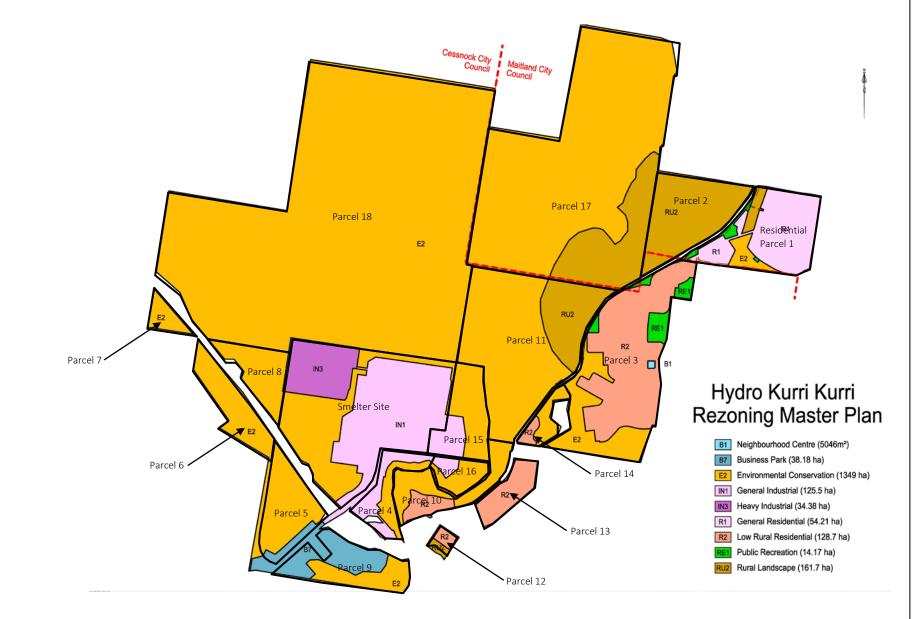
The conclusions presented in this report represent ENVIRON's professional judgment based on information made available during the course of this assignment and are true and correct to the best of ENVIRON's knowledge as at the date of the assessment.


ENVIRON did not independently verify all of the written or oral information provided to ENVIRON during the course of this investigation. While ENVIRON has no reason to doubt the accuracy of the information provided to it, the report is complete and accurate only to the extent that the information provided to ENVIRON was itself complete and accurate.

This report does not purport to give legal advice. This advice can only be given by qualified legal advisors.

10.1 User Reliance

This report has been prepared exclusively for Hydro Aluminium Kurri Kurri Pty Ltd and may not be relied upon by any other person or entity without ENVIRON's express written permission.


Figures

Hydro Aluminium Kurri Kurri – Phase 2 Environmental Site Assessment

Parcel 12 - Site Location

SENVIRON

Proposed Land Zonings taken from Hydro Kurri Kurri Preliminary Masterplan dated 26/3/15

Hydro Aluminium Kurri Kurri – Phase 2 Buffer Zone investigations

Land Parcels and Proposed Land Zoning

JOB NO: AS 130348 DATE: March 2015 FIGURE 2

KEY:

Site Boundary

Δ SF Soil Sample for Fluoride Analysis

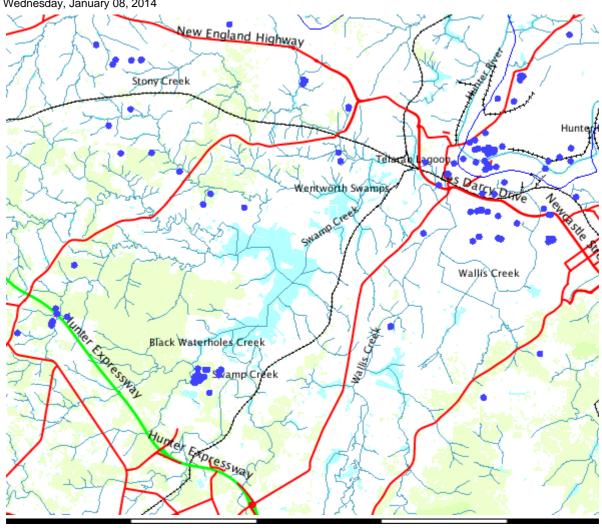
TP Test Pit

ACM ACM Fragment

♦ Hummocky Ground

Hydro Aluminium Kurri Kurri – Phase 2 Environmental Site Assessment

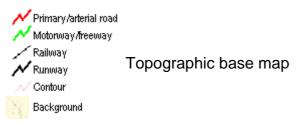
Parcel 12 – Soil Sampling Locations


JOB NO: AS130348 DATE: May 2015 FIGURE 3

Appendix A

Surrounding Groundwater Bores

Groundwater Wells near Employment Land Subarea 11


Map created with NSW Natural Resource Atlas - http://www.nratlas.nsw.gov.au Wednesday, January 08, 2014

0 15 Km

Legend

Symbol	Layer	Custodian
•	Cities and large towns renderImage: Cannot build image from features	
Cowe	Populated places renderImage: Cannot build image from features	
•	Towns	
•	Groundwater Bores	
2	Catchment Management Authority boundaries	
\sim	Major rivers	

 $\label{lem:copyright} © 2014 \ \ New \ South \ \ Wales \ Government. \ Map \ has been \ compiled \ from \ various \ sources \ and \ may \ contain \ errors \ or \ omissions. \ No \ representation \ is \ made \ as \ to \ its \ accuracy \ or \ suitability.$

Groundwater Works Summary

For information on the meaning of fields please see Glossary Document Generated on Monday, January 6, 2014

Print Report

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW079088

Works Details (top)

GROUNDWATER NUMBER GW079088

LIC-NUM

AUTHORISED-PURPOSES

INTENDED-PURPOSES MONITORING BORE

WORK-TYPE Bore

WORK-STATUS (Unknown)
CONSTRUCTION-METHOD (Unknown)
OWNER-TYPE (Unknown)

COMMENCE-DATE
COMPLETION-DATE
FINAL-DEPTH (metres)
DRILLED-DEPTH (metres)
CONTRACTOR-NAME

DRILLER-NAME

PROPERTY

GWMA

GW-ZONE

STANDING-WATER-LEVEL

SALINITY YIELD

Site Details (top)

REGION 20 - HUNTER

RIVER-BASIN AREA-DISTRICT

CMA-MAP
GRID-ZONE
SCALE
ELEVATION

ELEVATION-SOURCE

NORTHING 6371306.00 EASTING 358054.00 LATITUDE 32 47' 13" LONGITUDE 151 29' 3"

GS-MAP

AMG-ZONE 56
COORD-SOURCE
REMARK

Form-A (top)

no details

Licensed (top)

no details

Water Bearing Zones (top)

no details

Drillers Log (top)

no details

Warning To Clients: This raw data has been supplied to the Department of Infrastructure, Planning and Natural Resources (DIPNR) by drillers, licensees and other sources. The DIPNR does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.

Groundwater Works Summary

For information on the meaning of fields please see Glossary Document Generated on Monday, January 6, 2014

Print Report

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW079090

Works Details (top)

GROUNDWATER NUMBER GW079090

LIC-NUM

AUTHORISED-PURPOSES

INTENDED-PURPOSES MONITORING BORE

WORK-TYPE Bore

WORK-STATUS (Unknown)
CONSTRUCTION-METHOD (Unknown)
OWNER-TYPE (Unknown)

COMMENCE-DATE
COMPLETION-DATE
FINAL-DEPTH (metres)
DRILLED-DEPTH (metres)
CONTRACTOR-NAME

DRILLER-NAME

PROPERTY

GWMA

GW-ZONE

STANDING-WATER-LEVEL

SALINITY

YIELD

Site Details (top)

REGION 20 - HUNTER

RIVER-BASIN AREA-DISTRICT

CMA-MAP
GRID-ZONE
SCALE
ELEVATION

ELEVATION-SOURCE

NORTHING 6371368.00 EASTING 358105.00 LATITUDE 32 47' 11" LONGITUDE 151 29' 5"

GS-MAP

Form-A (top)

no details

Licensed (top)

no details

Water Bearing Zones (top)

no details

Drillers Log (top)

no details

For information on the meaning of fields please see Glossary Document Generated on Monday, January 6, 2014

Print Report

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW079092

Works Details (top)

GROUNDWATER NUMBER GW079092

LIC-NUM

AUTHORISED-PURPOSES

INTENDED-PURPOSES MONITORING BORE

WORK-TYPE Bore

WORK-STATUS (Unknown)
CONSTRUCTION-METHOD (Unknown)
OWNER-TYPE (Unknown)

COMMENCE-DATE
COMPLETION-DATE
FINAL-DEPTH (metres)
DRILLED-DEPTH (metres)
CONTRACTOR-NAME

DRILLER-NAME

PROPERTY

GWMA

GW-ZONE

STANDING-WATER-LEVEL

SALINITY YIELD

Site Details (top)

REGION 20 - HUNTER

RIVER-BASIN AREA-DISTRICT CMA-MAP

GRID-ZONE SCALE ELEVATION

ELEVATION-SOURCE

 NORTHING
 6371429.00

 EASTING
 358078.00

 LATITUDE
 32 47' 9"

 LONGITUDE
 151 29' 4"

Form-A (top)

no details

Licensed (top)

no details

Water Bearing Zones (top)

no details

Drillers Log (top)

no details

For information on the meaning of fields please see Glossary Document Generated on Monday, January 6, 2014

Print Report

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW079093

Works Details (top)

GROUNDWATER NUMBER GW079093

LIC-NUM

AUTHORISED-PURPOSES

INTENDED-PURPOSES MONITORING BORE

WORK-TYPE Bore

WORK-STATUS (Unknown)
CONSTRUCTION-METHOD (Unknown)
OWNER-TYPE (Unknown)

COMMENCE-DATE
COMPLETION-DATE
FINAL-DEPTH (metres)
DRILLED-DEPTH (metres)
CONTRACTOR-NAME

DRILLER-NAME

PROPERTY

GWMA

GW-ZONE

STANDING-WATER-LEVEL

SALINITY

YIELD

Site Details (top)

REGION 20 - HUNTER

RIVER-BASIN AREA-DISTRICT

CMA-MAP
GRID-ZONE
SCALE
ELEVATION

ELEVATION-SOURCE

 NORTHING
 6371460.00

 EASTING
 358078.00

 LATITUDE
 32 47' 8"

 LONGITUDE
 151 29' 4"

Form-A (top)

no details

Licensed (top)

no details

Water Bearing Zones (top)

no details

Drillers Log (top)

no details

For information on the meaning of fields please see Glossary Document Generated on Monday, January 6, 2014

Print Report

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW079094

Works Details (top)

GROUNDWATER NUMBER GW079094

LIC-NUM

AUTHORISED-PURPOSES

INTENDED-PURPOSES MONITORING BORE

WORK-TYPE Bore

WORK-STATUS (Unknown)
CONSTRUCTION-METHOD (Unknown)
OWNER-TYPE (Unknown)

COMMENCE-DATE
COMPLETION-DATE
FINAL-DEPTH (metres)
DRILLED-DEPTH (metres)
CONTRACTOR-NAME

DRILLER-NAME

PROPERTY

GWMA

GW-ZONE

STANDING-WATER-LEVEL

SALINITY YIELD

Site Details (top)

REGION 20 - HUNTER

RIVER-BASIN AREA-DISTRICT CMA-MAP

GRID-ZONE SCALE ELEVATION

ELEVATION-SOURCE

 NORTHING
 6371462.00

 EASTING
 358234.00

 LATITUDE
 32 47' 8"

 LONGITUDE
 151 29' 10"

Form-A (top)

no details

Licensed (top)

no details

Water Bearing Zones (top)

no details

Drillers Log (top)

no details

For information on the meaning of fields please see Glossary Document Generated on Monday, January 6, 2014

Print Report

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW079096

Works Details (top)

GROUNDWATER NUMBER GW079096

LIC-NUM

AUTHORISED-PURPOSES

INTENDED-PURPOSES MONITORING BORE

WORK-TYPE Bore

WORK-STATUS (Unknown)
CONSTRUCTION-METHOD (Unknown)
OWNER-TYPE (Unknown)

COMMENCE-DATE
COMPLETION-DATE
FINAL-DEPTH (metres)
DRILLED-DEPTH (metres)
CONTRACTOR-NAME

DRILLER-NAME

PROPERTY

GWMA

GW-ZONE

STANDING-WATER-LEVEL

SALINITY YIELD

Site Details (top)

REGION 20 - HUNTER

RIVER-BASIN AREA-DISTRICT CMA-MAP

GRID-ZONE SCALE ELEVATION

ELEVATION-SOURCE

 NORTHING
 6371707.00

 EASTING
 358152.00

 LATITUDE
 32 47' 0"

 LONGITUDE
 151 29' 7"

Form-A (top)

no details

Licensed (top)

no details

Water Bearing Zones (top)

no details

Drillers Log (top)

no details

For information on the meaning of fields please see Glossary Document Generated on Monday, January 6, 2014

Print Report

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW079097

Works Details (top)

GROUNDWATER NUMBER GW079097

LIC-NUM

AUTHORISED-PURPOSES

INTENDED-PURPOSES MONITORING BORE

WORK-TYPE Bore

WORK-STATUS (Unknown)
CONSTRUCTION-METHOD (Unknown)
OWNER-TYPE (Unknown)

COMMENCE-DATE
COMPLETION-DATE
FINAL-DEPTH (metres)
DRILLED-DEPTH (metres)
CONTRACTOR-NAME

DRILLER-NAME

PROPERTY

GWMA

GW-ZONE

STANDING-WATER-LEVEL

SALINITY YIELD

Site Details (top)

REGION 20 - HUNTER

RIVER-BASIN AREA-DISTRICT

CMA-MAP
GRID-ZONE
SCALE
ELEVATION

ELEVATION-SOURCE

 NORTHING
 6371679.00

 EASTING
 358335.00

 LATITUDE
 32 47' 1"

 LONGITUDE
 151 29' 14"

Form-A (top)

no details

Licensed (top)

no details

Water Bearing Zones (top)

no details

Drillers Log (top)

no details

For information on the meaning of fields please see Glossary Document Generated on Monday, January 6, 2014

Print Report

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW079099

Works Details (top)

GROUNDWATER NUMBER GW079099

LIC-NUM

AUTHORISED-PURPOSES

INTENDED-PURPOSES

WORK-TYPE Bore

WORK-STATUS (Unknown)

CONSTRUCTION-METHOD (Unknown)

OWNER-TYPE (Unknown)

COMMENCE-DATE

COMPLETION-DATE

FINAL-DEPTH (metres)

DRILLED-DEPTH (metres)

CONTRACTOR-NAME

DRILLER-NAME

PROPERTY

GWMA

GW-ZONE

STANDING-WATER-LEVEL

SALINITY

YIELD

Site Details (top)

REGION 20 - HUNTER

RIVER-BASIN

AREA-DISTRICT

CMA-MAP

GRID-ZONE

SCALE

ELEVATION

ELEVATION-SOURCE

NORTHING 6371003.00 EASTING 358448.00 LATITUDE 32 47' 23" LONGITUDE 151 29' 18"

Form-A (top)

no details

Licensed (top)

no details

Water Bearing Zones (top)

no details

Drillers Log (top)

no details

For information on the meaning of fields please see <u>Glossary</u> Document Generated on Monday, January 6, 2014

Print Report

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW079101

Works Details (top)

GROUNDWATER NUMBER GW079101

LIC-NUM

AUTHORISED-PURPOSES

INTENDED-PURPOSES

WORK-TYPE Bore

WORK-STATUS (Unknown)

CONSTRUCTION-METHOD (Unknown)

OWNER-TYPE (Unknown)

COMMENCE-DATE

COMPLETION-DATE

FINAL-DEPTH (metres)

DRILLED-DEPTH (metres)

CONTRACTOR-NAME

DRILLER-NAME

PROPERTY

GWMA

GW-ZONE

STANDING-WATER-LEVEL

SALINITY

YIELD

Site Details (top)

REGION 20 - HUNTER

RIVER-BASIN

AREA-DISTRICT

CMA-MAP

GRID-ZONE

SCALE

ELEVATION

ELEVATION-SOURCE

NORTHING 6371680.00 EASTING 358387.00 LATITUDE 32 47' 1" LONGITUDE 151 29' 16"

Form-A (top)

no details

Licensed (top)

no details

Water Bearing Zones (top)

no details

Drillers Log (top)

no details

For information on the meaning of fields please see Glossary Document Generated on Monday, January 6, 2014

Print Report

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW079102

Works Details (top)

GROUNDWATER NUMBER GW079102

LIC-NUM

AUTHORISED-PURPOSES

INTENDED-PURPOSES

WORK-TYPE Bore

WORK-STATUS (Unknown) **CONSTRUCTION-METHOD** (Unknown)

OWNER-TYPE (Unknown)

COMMENCE-DATE

COMPLETION-DATE

FINAL-DEPTH (metres)

DRILLED-DEPTH (metres)

CONTRACTOR-NAME

DRILLER-NAME

PROPERTY

GWMA

GW-ZONE

STANDING-WATER-LEVEL

SALINITY

YIELD

Site Details (top)

REGION 20 - HUNTER

RIVER-BASIN

AREA-DISTRICT

CMA-MAP

GRID-ZONE

SCALE

ELEVATION

ELEVATION-SOURCE

NORTHING 6371685.00 **EASTING** 358725.00 **LATITUDE** 32 47' 1" 151 29' 29" LONGITUDE

Form-A (top)

no details

Licensed (top)

no details

Water Bearing Zones (top)

no details

Drillers Log (top)

no details

For information on the meaning of fields please see <u>Glossary</u> Document Generated on Monday, January 6, 2014

Print Report

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW079103

Works Details (top)

GROUNDWATER NUMBER GW079103

LIC-NUM

AUTHORISED-PURPOSES

INTENDED-PURPOSES

WORK-TYPE Bore

WORK-STATUS (Unknown)

CONSTRUCTION-METHOD (Unknown)

OWNER-TYPE (Unknown)

COMMENCE-DATE

COMPLETION-DATE

FINAL-DEPTH (metres)

DRILLED-DEPTH (metres)

CONTRACTOR-NAME

DRILLER-NAME

PROPERTY

GWMA

GW-ZONE

STANDING-WATER-LEVEL

SALINITY

YIELD

Site Details (top)

REGION 20 - HUNTER

RIVER-BASIN

AREA-DISTRICT

CMA-MAP

GRID-ZONE

SCALE

ELEVATION

ELEVATION-SOURCE

NORTHING 6371530.00 EASTING 358675.00 LATITUDE 32 47' 6" LONGITUDE 151 29' 27"

Form-A (top)

no details

Licensed (top)

no details

Water Bearing Zones (top)

no details

Drillers Log (top)

no details

Appendix B

Site Photographs

Photo 1: Photograph showing the grassed area of Lot 12 with the dwelling in the background, facing north.

Photo 2: Photograph of mature trees on the south western boundary of the site.

Title:	Phase 2 ESA	Approved:	Project-Nr.:	Date:	
Site:	Parcel 12	KW	AS130348	24/1/2014	
Client:	Hydro Aluminium Kurri Kurri		C El	NVIRON	

Photo 3: Photograph of the AbiGroup depot on Lot 10. Note the demountables in the background of the photo and the surface gravels in the foreground.

Photo 4: Photograph of the fenced-off area on Lot 10.

Title:	Phase 2 ESA	Approved:	Project-Nr.:	Date:	
Site:	: Parcel 12		AS130348	24/1/2014	
Client:	Hydro Aluminium Kurri Kurri	S ENVIR			

Photo 5: Photograph of the grassed portion of the site, where hummocky ground appears to be the location of former poultry sheds.

Photo 6: Photograph of the grassed portion of Lot 10 with the dwelling in the background, facing north.

Title:	Phase 2 ESA	Approved:	Project-Nr.:	Date:	
Site:	Parcel 12		AS130348	24/1/2014	
Client:	Hydro Aluminium Kurri Kurri	S ENVIRO			

Appendix C

Field Information Sheets

Site Walkover Checklist

Project No.: AS(8	30348	Date and Time: 30/10/13	7
	為12	Weather: Cloudy & Sunny	
	cleaded Lot 12	Environ Personnel: KW	
Sile Description			
Topography	flat near road	, slopes at treed area at real real real real real real real real	rtoward
Surface Geology		rear fence to creek.	
Fill evident?	yes - house lo	ts/paddocks	
Hummocky ground?	425		
Structures on site?	yes house	at front & sheds & small anim	w padlocks
Location of structures	ι/		
Building materials used in structures			
Asbestos debris on site?	No - not s	ighted	
Location of asbestos debris?	_		7
Volume of asbestos	_		
debris? Sandy (Silt topsoil	-) F sample(SES)	1 - 32.79938°S 151.48628°E	5
CA COLORS IN A			
Point of Interest		Easting Nadhing S	
old poultry shed			<u>S</u>
g very wear gra	ssed - Surface metal ins	thummocky thank	
Bank Section and Association a	back of house	المنافذة أما	
Describitanto (gnoto)	1 1	w of lot on cleared ground before	e treed
FA Humonock	1	9952°S & Marby very green	e treed area
		(different) grass patche	<u> </u>
Hummocky	$\frac{900und 2 - 3}{15}$	2.7992705 * pojetrial fill ma	rand
flummocky	ground 3 -> 32	.79912°S at front of lot 32.79886°S	-
	151	1.48702°E 151.48713°E	
Miscolardality	onmons		7117
trees a	t rear of lot le	are elevated on a little bit -t	٠ الا
F sample	taken -	32,7992705]
Sandy, silt, sl	ightly moist	151 = 48670°E	
	F4) See is lot 11 -	for bearings	-
	7 7 7 101 11	(c. Destrict)	1

 $\verb|\Auhunfp1.environcorp.int\shared_files\Projects\Hydro\ Australia\Site\ Walkover\ Checklst.doc$

ENVIRON

Site Walkover Checklist

Project No.: AS 13	0348	Date and Time: $30/10/13$
Land Parcel: FLP	_	Weather: Cloudy, Sunny
	1clead Rd - Lot 11	Environ Personnel:
Sie Description		
Topography	flat at front	near Rd, gentle slope to creekat rea
Surface Geology		,
Fill evident?	hummocky gro	ound,
Hummocky ground?	yes	
Structures on site?	house & she	ds it fill mound at rear of larger
Location of structures	front of lo	ds it fill mound at rear of larger shed
Building materials		
used in structures Asbestos debris on		
site?		
Location of asbestos debris?		
Volume of asbestos		
debris?		
etalogica	ės – – – – – – – – – – – – – – – – – – –	
Point of Interest		Easting Northing
hummody g	round 1	151-48601°E 32-79968°S
Britishade Britishad		
special of thoos	raphs Taken	
io io		
		-
	and the second s	
Miscellaneous Feld C	ommens ed cleared file	ld at rear with
J	(6.6)	
- F Sample	- 32 · 79	927°5 moist 10-01m-0.02m
	151.48	610 6
* add notes		mid point of lox com and
from lot 12	- (mistakenly worlden	
	, J	151.48710°E
\		

1.environcorp.int\shared_files\Projects\Hydro Australia\Site Walkover Checklst.doc

ENVIRON

Site Walkover Checklist

Project No.: AST	30348	Date and Time: $30/10/13$
Land Parcel: ELF	*	Weather: Partally sunny
Lot and DP:	F 10	Environ Personnel:
SIGNATURE OF THE SECOND SE		
Topography		
Surface Geology		
Fill evident?		
Hummocky ground?		
Structures on site?	house of 4 she	ds & fenced offgrass plot in back part of lot evry near road
Location of structures	front of prop	erty near road
Building materials used in structures		
Asbestos debris on site?	yes I piece sigh	ted in potential fill area (1)
Location of asbestos debris?	11	
Volume of asbestos debris? F- sample tak	-3(SF6)	S. 151.48726 F 2:01-0:02m 6000
ters benough the	es .	
Point of Interest	house	Easting Northing
AIL (U)	D brok	sheet 151 18 113 0 120 11 1200 AC
	-1 1	for
	form	stry l
Principal Property	Tooks of the	fenced off
		abbey group 9
		depot) clear site co
		3 demantables & exposed he
	1 - 32 Cana 6	gravel remains
hummocky grow	151.48695° E	Sin
ferred off pla	F - 32.79977°S	151,4X619 E
	online in	to
Suspected	I poultry sheds	on land-on elevated strips
N .		and that
nummocky grown	(2) 32.8004°5	= 732.79966°S -9151.48745°E
hummocky grow	151.4870	9°F 7 151.48745°E
))	ud (4) - 32.800 151.487	47°E

Appendix D

Results Tables

TABLE A: Soil Analytical Results - Grid Sampling

Sample Depth: 0.0m - 0.01m Sampling Date: 30/10/13 Laboratory PQL: 0.5 mg/kg

Site Specific HIL - Fluoride: 440mg/kg

	Soluble		
Sample	Fluoride		
Identification	mg/kg (1:5		
	soil:water)		
SF4	5		
SF5	4		
SF6	4		

TABLE B: Soil Analytical Results - Infill Areas

Sample Identification			G	uideline			TP45	TP50
Sample Depth (m)					F01			
Date	PQL	HIL 'A' ^A	HSL 'A' Sand 0m to 1m	EIL Residential ^B	ESL Residential (Coarse Soil)	Mgt Limits Residential	2/04/2014	3/04/2014
Sample Profile							FILL	FILL
Sample collected by							KW	KW
Metals								
Arsenic	5	100		100			-	<5
Cadmium	1	20					-	<1
Chromium	2	100		190			-	7
Copper	5	6000		60			-	16
Nickel	5	400		30			-	<5
Lead	2	300		1100			-	4
Zinc	5	7400		70			-	31
Marcury	0.1	10					-	0.2
Polycyclic Aromatic Hydroc	arbons (PA	H)	•					
Naphthalene	0.1			170			<0.5	0.8
Acenaphthylene	0.1						<0.5	<0.5
Acenaphthene	0.1						<0.5	<0.5
Fluorene	0.1						<0.5	<0.5
Phenanthrene	0.1						<0.5	7
Anthracene	0.1						<0.5	0.6
Fluoranthene	0.1						<0.5	1.6
Pyrene	0.1						<0.5	0.6
Benz(a)anthracene	0.1						<0.5	<0.5
Chrysene	0.1						<0.5	<0.5
Benzo(b)&(k)fluoranthene	0.2						<0.5	<0.5
Benzo(a) pyrene	0.05				0.7		<0.5	<0.5
Indeno(1,2,3-c,d)pyrene	0.1						<0.5	<0.5
Dibenz(a,h)anthracene	0.1						<0.5	<0.5
Benzo(g,h,i)perylene	0.1						<0.5	<0.5
Benzo(a)pyrene TEQ	0.5	3					<0.5	<0.5
Total +ve		300					<0.5	10.6
Total Recoverable Hydrocar	· _ <i>·</i>	- NEPM (2	013)					
TRH C6 - C10	25		45		180	700	<25	<25
vTPH C6 - C10 less BTEX	25		45		-	-	<25	<25
TRH >C10-C16	50		110		120	1000	<50	<50
TRH >C16-C34	100		NL		300	2500	<100	<100
TRH >C34-C40	100		NL		2800	10,000	<100	<100
BTEX								
Benzene	0.2		0.5		50		<0.2	<0.2
Toluene	0.5		160		85		<0.5	<0.5
Ethylbenzene	1		35		70		<1	<1
m+p-xylene	2		40		105		<2	<2
o-Xylene	1		40				<1	<1
All results are in mg/kg		1		1	l			

All results are in mg/kg

Benzo(a)pyrene TEQ is indicative of carcinogenic PAHs: the HIL is based on the 8 carcinogenic PAHs and their TEFs (potency relative to B(a)P) adopted by CCME 2008. The B(a)P TEQ is calculated by multiplying the concentration of each carcinogenic PAH in the sample by its B(a)P TEF and summing these products.

Page 1 of 1 Environ

A HIL A - Residential landuse

DEILs represent the most conservative value possible as the lowest value for added contaminant limit (ACL) was used, irrespective of soil properties and ambient background Results shaded grey are in excess of the investigation criteria.

TABLE C: Soil Quality Assurance/ Quality Control Results

TABLE C: Soil Quality Ass			ol Results
Sample Identification	TP50	QA1	
Sample Depth (m)	Fill soi	l matrix	
Duplicate Type	Intralat	oratory	RPD %
Sample Profile	FI	LL	
Sample collected by	К		
Metals			
Arsenic	<5	5	NC
Cadmium	<1	<1	NC
Chromium	7	13	60
Copper	16	23	36
Lead	<5	6	NC
Nickel	4	8	67
Zinc	31	32	3
Mercury	0.2	0.3	40
Polycyclic Aromatic Hydrocal	rbons (PAH)		
Naphthalene	<0.5	<0.5	NC
Acenaphthylene	<0.5	<0.5	NC
Acenaphthene	<0.5	<0.5	NC
Fluorene	<0.5	<0.5	NC
Phenanthrene	<0.5	<0.5	NC
Anthracene	<0.5	<0.5	NC
Fluoranthene	<0.5	<0.5	NC
Pyrene	<0.5	<0.5	NC
Benz(a)anthracene	<0.5	<0.5	NC
Chrysene	<0.5	<0.5	NC
Benzo(b)&(k)fluoranthene	<0.5	<0.5	NC
Benzo(a) pyrene	<0.5	<0.5	NC
Indeno(1,2,3-c,d)pyrene	<0.5	<0.5	NC
Dibenz(a,h)anthracene	<0.5	<0.5	NC
Benzo(g,h,i)perylene	<0.5	<0.5	NC
Benzo(a)pyrene TEQ	<0.5	<0.5	NC
Total +ve	<0.5	<0.5	NC
Total Recoverable Hydrocarb	ons (TRH) - N	NEPM (201	3)
TRH C6 - C10	<25	<25	NC
vTPH C6 - C10 less BTEX	<25	<25	NC
TRH >C10-C16	<50	<50	NC
TRH >C16-C34	<100	<100	NC
TRH >C34-C40	<100	<100	NC
BTEX			
Benzene	<0.2	<0.2	NC
Toluene	<0.5	<0.5	NC
Ethylbenzene	<1	<1	NC
m+p-xylene	<2	<2	NC
o-Xylene	<1	<1	NC
			ı

Note all units in mg/kg

BOLD identifies where RPD results

intralaboratory	interlaboratory	
>50	>60	where both sample results exceed ten x PQL
>75	>85	where both sample results are within 5 to 10 x PQL
>100	>100	where both sample results are within 2 to 5 x PQL
AD>2.5 * PQL		where one or both sample results are <2 x PQL

BOLD identified where blanks >0

Where results are within two of the above ranges the most conservative criteria have been used to assess duplicate performance

Appendix E

Laboratory Reports

CERTIFICATE OF ANALYSIS

Work Order : **ES1323782** Page : 1 of 3

Client : ENVIRON AUSTRALIA PTY LTD Laboratory : Environmental Division Sydney

Contact : MR STEVE CADMAN Contact : Client Services

Address : PO BOX 560 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

NORTH SYDNEY NSW. AUSTRALIA 2060

 E-mail
 : scadman@environcorp.com
 E-mail
 : sydney@alsglobal.com

 Telephone
 : +61 02 99548114
 Telephone
 : +61-2-8784 8555

Facsimile : +61-2-8784 8500

Project : AS130348 QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

 Order number
 : --

 C-O-C number
 : --

 Date Samples Received
 : 04-NOV-2013

 Sampler
 : KW
 Issue Date
 : 14-NOV-2013

 Site

No. of samples received : 4

release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Descriptive Results

NATA Accredited Laboratory 825

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ashesh Patel	Inorganic Chemist	Sydney Inorganics
Christopher Owler	Team Leader - Asbestos	Newcastle - Asbestos
Nanthini Coilparampil	Laboratory Manager - Inorganics	Sydney Inorganics
Pabi Subba	Senior Organic Chemist	Sydney Inorganics

Address 277-289 Woodpark Road Smithfield NSW Australia 2164 PHONE +61-2-8784 8555 Facsimile +61-2-8784 8500 Environmental Division Sydney ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company

Page : 2 of 3 Work Order : ES1323782

Client : ENVIRON AUSTRALIA PTY LTD

Project : AS130348

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

- EA200 Legend
- EA200 'Am' Amosite (brown asbestos)
- EA200 'Ch' Chrysotile (white asbestos)
- EA200 'Cr' Crocidolite (blue asbestos)
- EA200 'Trace' Asbestos fibres detected by trace analysis per AS4964. The result can be interpreted that the sample contains detectable 'respirable' asbestos fibres
- EA200: 'UMF' Unknown Mineral Fibres. "-" indicates fibres detected may or may not be asbestos fibres. Confirmation by alternative techniques is recommended.
- EA200: Asbestos Identification Samples were analysed by Polarised Light Microscopy including dispersion staining.
- EA200: Negative results for vinyl tiles should be confirmed by an independent analytical technique.

Page : 3 of 3 Work Order : ES1323782

Client : ENVIRON AUSTRALIA PTY LTD

Project : AS130348

ALS

Analytical Results

Sub-Matrix: SOIL (Matrix: SOIL)	Client sample ID		ELP12 LOT10 ACM1	ELP12 LOT11 SF4	ELP12 LOT12 SF5	ALP12 LOT10 SF6			
Client sampling date / time				30-OCT-2013 15:00	30-OCT-2013 15:00	30-OCT-2013 15:00	30-OCT-2013 15:00		
Compound	CAS Number	LOR	Unit	ES1323782-001	ES1323782-002	ES1323782-003	ES1323782-004		
EA055: Moisture Content									
Moisture Content (dried @ 103°C)		1.0	%		5.0	2.6	4.9		
EA200: AS 4964 - 2004 Identification o	f Asbestos in bulk	samples							
Asbestos Detected	1332-21-4	0.1	g/kg	Yes					
Asbestos Type	1332-21-4	0.1		Ch + Cr					
Sample weight (dry)		0.01	g	3.62					
APPROVED IDENTIFIER:		-		S.SPOONER					
EK040: Fluoride	EK040: Fluoride								
Fluoride	16984-48-8	1	mg/kg		5	4	4		

Analytical Results Descriptive Results

Sub-Matrix: SOIL

Method: Compound	Client sample ID - Client sampling date / time	Analytical Results
EA200: AS 4964 - 2004 Identification of Asbestos in bulk samples		
EA200: Description	ELP12 LOT10 ACM1 - 30-OCT-2013 15:00	Two pieces of bonded asbestos cement sheeting approximately 25 x 25 x 5 mm.

QUALITY CONTROL REPORT

Work Order : **ES1323782** Page : 1 of 4

Client : ENVIRON AUSTRALIA PTY LTD Laboratory : Environmental Division Sydney

Contact : MR STEVE CADMAN Contact : Client Services

Address : PO BOX 560 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

NORTH SYDNEY NSW, AUSTRALIA 2060

Telephone : +61 02 99548114 Telephone : +61-2-8784 8555

Facsimile : +61-2-8784 8500

Project : AS130348 QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

C-O-C number : ---- Date Samples Received : 04-NOV-2013

Sampler : KW Issue Date : 14-NOV-2013
Order number : ----

No. of samples received : 4

Quote number : SY/285/10 No. of samples analysed : 4

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Site

NATA Accredited

Laboratory 825

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ashesh PatelInorganic ChemistSydney InorganicsChristopher OwlerTeam Leader - AsbestosNewcastle - AsbestosNanthini CoilparampilLaboratory Manager - InorganicsSydney InorganicsPabi SubbaSenior Organic ChemistSydney Inorganics

Address 277-289 Woodpark Road Smithfield NSW Australia 2164 | PHONE +61-2-8784 8555 | Facsimile +61-2-8784 8500 |
Environmental Division Sydney ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company

Page : 2 of 4
Work Order : ES1323782

Client : ENVIRON AUSTRALIA PTY LTD

Project : AS130348

ALS

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Page : 3 of 4
Work Order : ES1323782

Client : ENVIRON AUSTRALIA PTY LTD

Project : AS130348

ALS

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR:-No Limit; Result between 10 and 20 times LOR:-0% - 50%; Result > 20 times LOR:-0% - 20%.

Sub-Matrix: SOIL						Laboratory D	Ouplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EA055: Moisture Con	tent (QC Lot: 3143719)								
ES1323782-002	ELP12 LOT11 SF4	EA055-103: Moisture Content (dried @ 103°C)		1.0	%	5.0	6.1	20.0	No Limit
ES1323929-001	Anonymous	EA055-103: Moisture Content (dried @ 103°C)		1.0	%	11.3	12.3	8.6	0% - 50%
EK040S: Fluoride Sol	luble (QC Lot: 3142827)								
ES1323624-001	Anonymous	EK040S: Fluoride	16984-48-8	1	mg/kg	2	2	0.0	No Limit
ES1323624-010	Anonymous	EK040S: Fluoride	16984-48-8	1	mg/kg	2	2	0.0	No Limit

Page : 4 of 4 Work Order : ES1323782

Client : ENVIRON AUSTRALIA PTY LTD

Project : AS130348

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EK040S: Fluoride Soluble (QCLot: 3142827)								
EK040S: Fluoride	16984-48-8	1.0	mg/kg	<1	25.0 mg/kg	111	69	117

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL				Ma	trix Spike (MS) Repor	t	
				Spike	SpikeRecovery(%)	Recovery L	imits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EK040S: Fluoride S	oluble (QCLot: 3142827)						
ES1323624-001	Anonymous	EK040S: Fluoride	16984-48-8	25.0 mg/kg	115	70	130

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

The quality control term Matrix Spike (MS) and Matrix Spike Duplicate (MSD) refers to intralaboratory split samples spiked with a representative set of target analytes. The purpose of these QC parameters are to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL					Matrix Spike (N	IS) and Matrix Spil	ke Duplicate	(MSD) Repo	rt	
				Spike	Spike Red	covery (%)	Recovery	Limits (%)	RPDs	s (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control Limit
EK040S: Fluoride S	oluble (QCLot: 3142827)									
ES1323624-001	Anonymous	EK040S: Fluoride	16984-48-8	25.0 mg/kg	115		70	130		

INTERPRETIVE QUALITY CONTROL REPORT

Work Order : **ES1323782** Page : 1 of 5

Client : ENVIRON AUSTRALIA PTY LTD Laboratory : Environmental Division Sydney

Contact : MR STEVE CADMAN Contact : Client Services

Address : PO BOX 560 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

NORTH SYDNEY NSW, AUSTRALIA 2060

Telephone : +61 02 99548114 Telephone : +61-2-8784 8555

Facsimile : +61-2-8784 8500

Project : AS130348 QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

 C-O-C number
 : -- Date Samples Received
 : 04-NOV-2013

 Sampler
 : KW
 Issue Date
 : 14-NOV-2013

Order number :----

Quote number : SY/285/10 No. of samples received : 4

Quote number : SY/285/10 No. of samples analysed : 4

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Interpretive Quality Control Report contains the following information:

- Analysis Holding Time Compliance
- Quality Control Parameter Frequency Compliance
- Brief Method Summaries
- Summary of Outliers

Site

Page : 2 of 5 Work Order : ES1323782

Client : ENVIRON AUSTRALIA PTY LTD

Project : AS130348

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with recommended holding times (USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: SOIL					Evaluation	x = Holding time	breach; ✓ = Withir	n holding time
Method		Sample Date	E	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA055: Moisture Content								
Pulp Bag (EA055-103) ELP12 LOT12 SF5,	ALP12 LOT10 SF6	30-OCT-2013				06-NOV-2013	13-NOV-2013	✓
Soil Glass Jar - Unpreserved (EA055-103) ELP12 LOT11 SF4		30-OCT-2013				06-NOV-2013	13-NOV-2013	✓
EA200: AS 4964 - 2004 Identification of Asbesto	s in bulk samples							
Snap Lock Bag (EA200) ELP12 LOT10 ACM1		30-OCT-2013		28-APR-2014		12-NOV-2013	11-MAY-2014	✓
EK040: Fluoride								
Pulp Bag (EK040S) ELP12 LOT12 SF5,	ALP12 LOT10 SF6	30-OCT-2013	06-NOV-2013	06-NOV-2013	✓	06-NOV-2013	04-DEC-2013	✓
Soil Glass Jar - Unpreserved (EK040S) ELP12 LOT11 SF4		30-OCT-2013	06-NOV-2013	06-NOV-2013	✓	06-NOV-2013	04-DEC-2013	✓

Page : 3 of 5 Work Order ES1323782

Client **ENVIRON AUSTRALIA PTY LTD**

AS130348 Project

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(where) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: SOIL				Evaluation	n: × = Quality Co	ntrol frequency n	ot within specification ; \checkmark = Quality Control frequency within specification.
Quality Control Sample Type		С	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Regular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Fluoride - Soluble	EK040S	2	20	10.0	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Moisture Content	EA055-103	2	20	10.0	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Laboratory Control Samples (LCS)							
Fluoride - Soluble	EK040S	1	20	5.0	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Method Blanks (MB)							
Fluoride - Soluble	EK040S	1	20	5.0	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Matrix Spikes (MS)							
Fluoride - Soluble	EK040S	1	20	5.0	5.0	1	NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Page : 4 of 5 Work Order : ES1323782

Client : ENVIRON AUSTRALIA PTY LTD

Project : AS130348

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055-103	SOIL	A gravimetric procedure based on weight loss over a 12 hour drying period at 103-105 degrees C. This method is compliant with NEPM (2013) Schedule B(3) Section 7.1 and Table 1 (14 day holding time).
Asbestos Identification in bulk solids	EA200	SOIL	AS 4964 - 2004 Method for the qualitative identification of asbestos in bulk samples
Fluoride - Soluble	EK040S	SOIL	APHA 21st ed., 4500 FC Soluble Fluoride is determined after a 1:5 soil/water extract using an ion selective electrode.
Preparation Methods	Method	Matrix	Method Descriptions
1:5 solid / water leach for soluble analytes	EN34	SOIL	10 g of soil is mixed with 50 mL of distilled water and tumbled end over end for 1 hour. Water soluble salts are leached from the soil by the continuous suspension. Samples are settled and the water filtered off for analysis.

Page : 5 of 5 Work Order : ES1323782

Client : ENVIRON AUSTRALIA PTY LTD

Project : AS130348

Summary of Outliers

Outliers: Quality Control Samples

The following report highlights outliers flagged in the Quality Control (QC) Report. Surrogate recovery limits are static and based on USEPA SW 846 or ALS-QWI/EN/38 (in the absence of specific USEPA limits). This report displays QC Outliers (breaches) only.

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

- For all matrices, no Method Blank value outliers occur.
- For all matrices, no Duplicate outliers occur.
- For all matrices, no Laboratory Control outliers occur.
- For all matrices, no Matrix Spike outliers occur.

Regular Sample Surrogates

• For all regular sample matrices, no surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

This report displays Holding Time breaches only. Only the respective Extraction / Preparation and/or Analysis component is/are displayed.

No Analysis Holding Time Outliers exist.

Outliers: Frequency of Quality Control Samples

The following report highlights breaches in the Frequency of Quality Control Samples.

No Quality Control Sample Frequency Outliers exist.

PROJECT: Hydro Buffer Zone Investigation OFFICE: 19B, 50 Glebe Road, The Junction, NSW 2291

ORDER NUMBER::

AS130348

PURCHASE ORDER NO.:

COUNTRY OF ORIGIN: ALS QUOTE NO.:

(Standard TAT may be longer for some tests e.g., Ultra Trace Organics) TURNAROUND REQUIREMENTS:

SAMPLER MOBILE: 0423583538 EDD FORMAT (or default):

LIVOCASADEMUIONCOBATELIME

CONTACT PH: 49625444

PROJECT NO AS130348

CLIENT: Environ Australia Pty Ltd

CHAIN OF CUSTODY

ALS Laboratory: please tick >

Email Reports to (will default to PM if no other addresses are listed); seadman@ecuironcoro.com

COC Emailed to ALS7 (YES / NO) Yes SAMPLER: Kate Woods/Steve Cadman PROJECT MANAGER: Steve Cadman

> ©BRISBANE 2 Byth Street Stafford QLO 4053 Ph: 07 3243 7222 E: samples.brisbane@alsglobel.com DGLADSTONE 46 Callemondah Drive Clinton QLD 4880 Ph. 07 7471 5800 Et gladstone@alsglobal.com CADELAIDE 21 Burms Road Pooraka SA 5095 Ph: 08 8359 0890 E: adelaide@alaglobal.com

CIMELBOURNE 2-4 Westall Road Springvale VIC 3171
Ph: 03 8549 8600 E. samples melbourhe@alsglobal.com CIMUDGEE 1/29 Sydney Rodd Mudgee NSW 2850 Ph: 02 6372 6735 E. mudgee mail@aliglobal.com LIMACKAY 78 Harbour Road Mackey OLD 4740 Ph. 07 4944 0177 El mackay@atsglobal.com

DNEWCASTLE 5 Rose Gum Road Warabrook Ph: 02 4988 9433 E: samples.newcostle@alsg

E semples melbourhe@alsglobal.com Sydney Rodd Mudget NSW 2850 E. mudget mai@alsglobal.com	LINDWAR, 4/13 Geary Piece North Nows NSW 254; Ph 02 4423 2083 E. rowra@atsglobal.com LPERTH 10 Hod Way Maloga WA 6030 Ph. 08 9209 7655 E. samples perin@atsglobal.com		OTOONASVILLE 14-15 Deame Court Bothe OLD 4918 Ph. 07 4750 GEO E. Itanesenik enveromentalig Hagabal don OMOLLONGONG 98 Kenny Street Wallengang NSW 2550 Ph. 02 4225 3125 E. wallengang@Balagoost.com	Court Bohle OLD 4818 t thvironmentalty altiplobal com Street Wolfongong NSW 250 ong@alsglobal.com	٥	
Standard TAT (List due date):			FOR LABORATORY USE ONLY (Circle)	Sircle)		
☐ Non Standard or urgent TAT (List due date):	e date):		Custody Seal Intact?	řes	₹	× ×
	COC SEQUENCE NUMBER (Circle)		Free Ice / frozen Ice bricks present upon receipt?	Ύes	8	×
	coc: (1) 2 3 4 5 6	7	Random Sample Temperature on Receipt	•	റ്	
	OF: 1 2 3 4 5 6	7	7 Other comment			
RELINQUISHED BY:	RECEIVED BY:	REL	RELINQUISHED BY:	RECEIVED 6Y:	3	1
Com	\$	_	<u>k</u>	7000	72	
DAILYIME W/V/P	DATE/TIME:	DAT		DATE/TIME:)

Email Involce to (will default to PM if no other addresses are listed); scadman@environcorp.com COMMENTS/SPECIAL HANDLING/STORAGE OR DISPOSAL: ALS USE ONLY LAB 10 J Q \~0 5 S THO COST SAMPLE ID セア 100 7 (QA) 70 MATRIX: Solid Manalysis: Alexale Spite Approximation TP2801 9 からし P(70 ъ И 9 0 0 D O Relinquished By / Date: TYPE & PRESERVATIVE --Attach By PO// Internal Sheet: WO No:____ Organised By / Date:____ f G G Ø Ø Ø G 0/455 INS. CAS 22 BOTTLES TOTAL N 3 0 S 7 3/4/14410 3.4.14 1410 N (W) ANALYSIS REQUIRED including SUITES (NB. Suite Codes must be listed to attract suite price) X TPH/BTEX Where Metals are required, specify Total (unfiltered bottle required) or Dissolved (field filtered bottle required). PAHS K < pH, CEC, TOC Who kept den HQLD **Environmental Division** ES1407306 Work Order or samples requiring specific QC Additional Information 2/4/14 1300

Wally Container Codes: P = Unpreserved Plastic; N = Nithic Preserved Plastic; ORC = Nithic Preserved Plastic; ST = Sodium Hydroxidae/Cd Preserved Plastic; AF = Amber Glass Unpreserved; AP - Aufreight Unpreserved Plastic; N = Nithic Preserved Plastic; ORC = Nithic Preserved AF = Sodium Hydroxidae/Cd Preserved Plastic; AF = Amber Glass Unpreserved; AP - Aufreight Unpreserved Plastic; AF = Formadelynde Preserved Plastic; AF = Formadelynde Preserved Plastic; AF = Sodium Hydroxidae/Cd Preserved Plastic; AF = Aufreight Unpreserved Plastic; AF = Formadelynde Preserved Blass; AF = Sodium Hydroxidae/Cd Preserved Plastic; AF = Aufreight Unpreserved Plastic; AF = Formadelynde Preserved Blass; AF = Sodium Hydroxidae/Cd Preserved Plastic; AF = Aufreight Unpreserved Plastic; AF = Aufreight

JATOT L

0

0

Ġ

Telephone: +61-2-8784 8555

 \subseteq

10A20

ø

195

CHAIN OF CUSTODY

ALS Laboratory: please tick >

Email Involce to (will defauft to PM If no other addresses are listed): scadman@environcorp.com Email Reports to (will default to PM if no other addresses are listed).sradman@envicocoop.com PROJECT MANAGER: Steve Cadman

DRDER NUMBER::

A\$130348

PURCHASE ORDER NO.: PROJECT NO AS130348

COUNTRY OF ORIGIN: ALS QUOTE NO .:

(Standard TAT may be longer for some lests TURNAROUND REQUIREMENTS:

SAMPLER MOBILE: 0423583538 EDD FORMAT (or default):

Eurosts Wenvion

DATE/TIME:

RELINQUISHEDAY

5000

CONTACT PH: 49625444

COC Emailed to ALS? (YES / NO) Yes SAMPLER: Kate Woods/Steve Cadman PROJECT: Hydro Buffer Zone Investigation OFFICE: 198, 50 Glebe Road, The Junction, NSW 2291

CLIENT: Environ Australia Pty Ltd

CADELAIDE 21 Burna Road Pooraka SA 5095
Pix 08 8359 0890 E. addinide@ahgjobal.com
CBRISSANE 2 Dyh Sveet Stafford OLD 4083
Ph. 07 3243 7222 E. samples bristane @akgjobal.com

CIGLADSTONE 46 Calibrational brive Clinton QLD 4880 Ph: 07 7471 5600 Et gladstone@alsglobal.com

EMUDGEE 1/29 Sydney Rood Mudgee NSW 2850 Ph: 02 6372 6786 E. mudgee mail役alsplobal com LIMEL BOURNE 2-4 Wastal Road Springvale VIC 3171 Ph. 03 6549 9600 E. samples, gelbourne@alsglobal com UMACKAY 78 Haibour Road Mackey OLD 4740 Ph 07 4944 0177 Et mackey@elsglobal.com

UNEWCRSTLE 6 Road Gurn Road Watchrook NSW 2304
Ph. 02 4906 9433 Et samples, newcastie@aisglobal.com
UNOWRA 4-13 Gearry Paice North Nows NSW 2541
Ph. 02 4423 2903 Et nowra@aisglobal.com

USYDNEY 277-289 Woodpark Road Smithfold NSW 2164
Phr. 02 0704 8656 E. samptes sydney@bisglobal.com
CYOWNSVILE 14-15 Dasma Court Bothe QLD 4018
Phr. 07 4786 0800 E. Iownerwie environmental@airglobal.com

Non Standard or urgent TAT (List due date): Standard TAT (List due date): ロPERTH 10 Hod Way Malaga WA 6090 Ph: 08 0200 7055 Et samples.perh@alsglobal.com RECEIVED BY: coc: 1 (2) ş COC SEQUENCE NUMBER (Circle) DATE/ПИЕ: RELINQUISHED BY: Other comment: Random Sample Temperature on Receipt FOR LABORATORY USE ONLY (Circle) Free ice / frozen Ice bricks present upon receint? Sustody Seal Intact? ©WOLLONGONG 99 Kenny Street Wollengong NSW 2500 Ph: 02 4225 3125 Et wollengeng@alsglobel.com RECEIVED BY: DATE/TIME: Ύes ĕ ဂ 중 죵 ž Ņ

COMMENTS/SPECIAL	COMMENTS/SPECIAL HANDLING/STORAGE OR DISPOSAL:	F						,				i		
ALS USE ONLY	SAMPLE MATRIX: Sol	SAMPLE DETAILS MATRIX: Solid(S) Water(W)		CONTAINER INFORMATION		ANALYSI:	ANALYSIS REQUIRED including SUITES (NB. Suite Codes must be listed to attract suite price) Where Metals are required, specify Total (unfilted of bottle required) or Dissolved (field filtered bottle required).	including	SUITES (NI	3. Suite Codes	must be liste	d to attract sui	ite price)	Additional information
														Comments on likely contaminant levels, dilutions, or samples requiring specific QC analysis etc.
LAB ID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVATIVE (refer to codes below)	TOTAL					des	4			
	0 18		,			грн/втех	PAHS	metals	sbestos ID	OC/OP Pesticio	sbestos 200N	н, сес, тос	OLD	
JNR	1 Lot 458 TP 20	1/4/14	s	alass hours	7	į			\boxtimes		X	F	H	
SYL	Τρ2		s		2				X		X			7 874
فرا	TP22	0	s		2								X	
7	li	0	v		2	×	X	X	\times	X	X			
15	rapetusa 1927		s		0				X		×		1	
9)	TP28		s		12				X		Υ			The state of the s
											`			

TOTAL

•

0

0

ڒ V

么

X

٢ 20

TP34 635年本

N

Ś to S Ø s co s

<u>~</u> ھ

1030

φ

४

X

Ü

N

183

1832

CHAIN OF CUSTODY

CHAIN OF CUSTODY QUADELADE 2: Butma Road Pooraka SA 5055	ŭ	Ph 07 4944 0177 F. mark and stocker, OLD 4740	DNEWCASTLE 5 Rose Gum Rook Warshings McM 2204		
ALS Laboratory: please tick > UBRISBANE 2 Byth Street Stafford QLD 4059 Phr 07 3243 7222 E: samples birdsame@alapke	abal cem	VIC 3171	Ph 02 4968 9433 E samples newcastie@elegiobel.com CNOWRA 4/13 Geary Place North Nowra NSW 2541	Ph 02 8784 855 E. samples sydnoyd samphead Nayv 2184 Ph 02 8784 855 E. samples sydnoyd alsolobal com DTOWNSVILLE 14-15 Dasma Court Robin OLD 1616	
	OLD 4580		CIPERTH 10 Hod Way Malaga WA 6090	Ph: 07 4796 0606 © townswills environmental & algiptate com DWOLLONGONG 89 Kenny Street Wolformen NEW JEAN	
CLIENT: Environ Australia Pty Ltd	NIND BEOLIGE		PRI DR 9209 7655 Et samples perth@atsglobal.com	Ph 02 4225 3125 E: wollangeng@alsglobal.com	
OFFICE: 198, 50 Glebe Road, The Junction, NSW 2291	(Standard TAT may be longer for some tests	Standard IAT (List due date):		FOR LABORATORY USE ONLY (Circle)	
PROJECT: Hydro Buffer Zone Investigation		Non Standard or urgent TAT (List due date):	date):	Custody Seal Intact? Yes	No N/A
	ALCO GOOTE NO.:		COC SEQUENCE NUMBER (Circle)	Free ice / frozen ice bricks present upon	
PURCHASE ORDER NO.:	COUNTRY OF ORIGIN:		coc: 1 2 3 4 5 6 7	recept?	N/A
PROJECT MANAGER: Steve Cadman CONTAC	CONTACT PH: 49625444			Raikom Sample Femperature on Receipt:	റ്
SAMPLER: Kate Woods/Steve Cadman SAMPLE	SAMPLER MOBILE: 0423583538	1	Ur: 1 2 3 4 5 6 7	Other comment:	
COC Emailed to ALS? (YES / NO) Yes EDD FOR	MAT (or default):	今	RECEIVED BY:	RECEIVED BY:	iY:
Email Reports to (will default to PM if no other addresses are listed): sediman@enuiror	Commence action of margin	,		lb lb	
Email Invoice to (will default to PM if no other addresses are listed): scadman@environcorp.com	orp.com	1.cm 3/4/10 Mail		DATE/TIME: DATE/TIME:	
COMMENTS/SPECIAL HANDLING/STORAGE OR DISPOSAL:			(400	0474/7/70	

7.		 •	.		•	•	•	0	•	TOTAL				
			胍		×	X	×	X	1				Ţ	
TANGE OF THE PARTY	-	-		+		(7	-	7	W	co.	€	0A1	36
					X	 X	<	X	V		w	6	750	
					X	-	-		1			, , , , , , , , , , , , , , , , , , , ,		25
	×	-	-	-	+		+)-		s	2/1/1/4	34 fauce1 12, Lot 18,10	7
11	 								J		s	0, 4	1241	\$
	Χ,								7		u			700
	#				 >		×	×	1		,			27
	X				(+	\$	5	3		s	0	Parcel 12, Lot 11 /LC	31
	>						1		2		s	8	that.	30
	5					 	···		2		s	0	1241	5
	X								1			\$ (3 A
	×			-		+	+		1		s		1001	28
	1	+	+	-					J-		w	0 +0-05	0 80 0	1
			<u>~</u>	_	~				2				1 /9	1
WEST OF TO		-	8		X	+					0	_	4020	36
		-							J		s,		156J.	52
			<u>_</u> く		_ <				2	91955 1018	0	41418	1176	1 -
,	ноі	рН,	ast	OC	as	8 1	P	TI			+	د	1500	ŗ
	.0	CEC, TOC	pestos 200N	IOP Pesticide	bestos ID	netals	AHs	PH/BTEX					Burcel 13 , Lotusa	
				·s	·				TOTAL	TYPE & PRESERVATIVE	MATRIX	DATE / TIME	SAMPLEID	LAB ID
Comments on likely contaminant levels, dilutions, or samples requiring specific QC analysis etc.				. .										
Production and manual	tle required).	where Metals are required, specify Yotał (unfillened bottle required) or Disselved (field fillered bottle required).	t) or Dissolved	d battle require.	Yotal (unfillere	equired, specify	Yo Metals are i	vane						
Additional Information	act suite price)	ANALYSIS REQUIRED Including SUITES (N.B. Suile Codes must be listed to attract suite price)	Codes must b	S (NB. Sulle	ding SUITE	JIRED Inclu	YSIS REQU	ANA		CONTAINER INFORMATION		MATRIX: Solid(S) Water(W)	MATRIX: Sol	ALS USE ONLY
												DETAILS	SAMPI	

Water Confairer Confes: P = Unpreserved Plastic; N = Nitric Preserved Plastic; ORC = Nitric Preserved Plastic; S = Sodium Hydroxide/Cd Preserved Plastic; AG = Amber Glass Unpreserved; AP - Aidfreight Unpreserved Plastic; N = Nitric Preserved Plastic; N = Nitric Preserved Plastic; N = Aidfreight Unpreserved Plastic; N = HCl preserved AP - Aidfreight Unpreserved Plastic; Preserved AP - Aidfreight Unpreserved Plastic; N = Formaldehyde Preserved AP - Aidfreight Unpreserved Plastic; N = Formaldehyde Preserved AP - Aidfreight Unpreserved AP - Aidfreight Unpreserved Plastic; N = Formaldehyde Preserved AP - Aidfreight Unpreserved AP - Aidfreight Unpreserved Plastic; N = Formaldehyde Preserved AP - Aidfreight Unpreserved AP - Aidfreight Unpreserved AP - Aidfreight Unpreserved Plastic; N = Formaldehyde Preserved AP - Aidfreight Unpreserved AP - Aidfreight Unpreserved

Form Page 1 of 1

ORDER NUMBER::

COMMENTS/SPECIAL HANDLING/STORAGE OR DISPOSAL: PROJECT: Hydro Buffer Zone Investigation Email Invoice to (will default to PM if no other addresses are listed); scadman@environcorp.com COC Emailed to ALS? (YES / NO) Yes PROJECT MANAGER: Stove Cadman OFFICE: 19B, 50 Glebe Road, The Junction, NSW 2291 Email Reports to (will default to PM if no other addresses are listed); scadmen@environcorp.com SAMPLER: Kate Woods/Steve Cadman CLIENT: Environ Australia Pty Ltd AS130348 CHAIN OF CUSTODY ALS Laboratory: please tick 🔿 PURCHASE ORDER NO.: PROJECT NO AS130348 LANEL/AUDE 21 Burma Road Pooraka SA 6006 Ph 08 8359 0890 E: adelaid@alagbbal.com LBRISDANE 2 Byh Street SIRIFOR QLD A026 Ph 07 3243 7272 E: damplea.brisbane@alaglobal.com QGLADSTONE 48 Callemondsh Drive Clinton QLD 4680 Ph: 07 7471 5600 E: gladstone@elsglobal.com EDD FORMAT (or default): **SAMPLER MOBILE: 0423583538** CONTACT PH: 49625444 ALS QUOTE NO.: (Slandard TAT may be longer for some tests e.g., Ultra Trace Organics) COUNTRY OF ORIGIN: **TURNAROUND REQUIREMENTS:** FUNDOSEENVILONGADECIMEN 3/4/14 1 DMUDGEE 1/29 Sydney Road Addgoo NSW 2850 Ph. 02 6372 6735 E. mudge/mail@alsdrobal.com DMELBOURNE 2-4 Westall Road Springvale VIC 3171 Ph: 03 8549 9600 E. samples melbourné@alsglobal.com URACKAY 76 Herbour Road Mackay QLD 4740 Ph: 07 4841 0177 E: mackay@alsglobal.com RELINQUISHER BY; ☐ Non Standard or urgent TAT (List due date): "Standard TAT (List due date): DATE/TIME: ONEWCASTIE 5 Rose (Jun Road Warabrook NSW 2200-Ph. 02 4986 943 E. samples newcast@@idglobal.com DNOWRA 4/13 Goary Flace Narth Nowto NSW 2541 Ph: 02 4423 2063 E. nowna@atsglobal.com ©PERTH 10 Hod WayMalaga, WA 6090 Ph; 06 9209 7655 E; samples.perth@alaglobal.com RECEIVED BY: 000: 유 COC SEQUENCE NUMBER (Circle) S.Y.14 RELINQUISHED BY: 6 Other comment: Random Sample Temperature on Receipt: Free ice / frozen ice bricks present upon FOR LABORATORY USE ONLY (Circle) Custody Seal Intact? CBSYDNEY 277-289 Woodpark Road Smithfeld NSW 2164
Ph. 02 8764 8556. E. semples sydroy@asglobal com.
GTOWNESVILE E. 1:50 Deams Court Bolbe o. D. 63:18
Ph. 07 4796 D600 E. townesvila anxionmensio@asglobal com. DWOLLONGONG 99 Kehny Street Wollongong NSW 2500 Ph: 02 4225 3125 E: wollongong@alsglobal.com DATE/TIME: RECEIVED BY: ğ Yes ó ᇂ 중 Χ× Ş

STO GOT ONE	MATRIX: Solid(S) Water	MATRIX: Solid(S) Water(W)		CORTAINER INFORMATION		Where N	Where Metals are required, specify Total (unlitered bottle required) or Dissolved (field filered bottle required).	d, specify Total	(unfiltered bot	lo required) or	Where Metals are required, specify Total (untilesed bottle required) or Dissolved (field filered bottle required).	filtered bottle re	uired),	Additional Information
														Comments on likely contaminant levels, dilutions, or samples requiring specific QC analysis etc.
LAB ID	SAMPLEID	DATE / TIME	MATRIX	TYPE & PRESERVATIVE (refer to codes below)	TOTAL BOTTLES	H/BTEX	AHs	netals	oestos ID	/OP Pesticides	estos 200N	CEC, TOC	. D	
48	arcel 13 lot-40 Kin	41/5/18	co	5 - L-k		ТЕ	P	8 (as	oc	asi	pH,	НО	
82	MING EAT	+	co	- Mock									\times	
39	1974 CM. RATTY SI 1820	CEZ -	တ	V. 2001		-							×	
40		Z Z	cs										<u> </u>	
13	TP27 ACM	CM 1/4/14	s	-3					<				>	
42 /	42 Parcel 13 lot 458 TP23 AGM	AGM	s						<>	ĺ			*	
£3	TP191	PIBACM	co)				< A	
47	TPILACM	ACM V	s										()	
			ر 										\rightarrow	/
			s											
]	Parcel 13 lot 458 3P2	7	S	\$ 2										
Ì	Ban2/13 107459 TP		S		.		F							
et at	2-ce/13 lot 45 5 TR18	86	v		5									
				(2)	7									
& T		,	7	TOTAL	0	•	•	•	•	•	•	•	48 PARCED 13 LOT USA TOTAL 0 0 0 0 0 0 0 0	4

CERTIFICATE OF ANALYSIS

Work Order : **ES1407306** Page : 1 of 14

Client : ENVIRON AUSTRALIA PTY LTD Laboratory : Environmental Division Sydney

Contact : MR STEVE CADMAN Contact : Client Services

Address : PO BOX 564 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

MAITLAND NSW. AUSTRALIA 2320

 E-mail
 : scadman@environcorp.com
 E-mail
 : sydney@alsglobal.com

 Telephone
 : +61 02 49344354
 Telephone
 : +61-2-8784 8555

 Facsimile
 : +61 02 49344359
 Facsimile
 : +61-2-8784 8500

Project : HYDRO BUFFER ZONE INVESTIGATION QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Order number : AS130348

C-O-C number : --- Date Samples Received : 03-APR-2014

Sampler : K.WOODS/S.CADMAN Issue Date : 15-APR-2014

Site : ---

No. of samples received : 48

Quote number : SY/433/13

No. of samples analysed : 12

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

NATA Accredited Laboratory 825

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Celine Conceicao	Senior Spectroscopist	Sydney Inorganics
Pabi Subba	Senior Organic Chemist	Sydney Inorganics
Pabi Subba	Senior Organic Chemist	Sydney Organics
Shobhna Chandra	Metals Coordinator	Sydney Inorganics

Address 277-289 Woodpark Road Smithfield NSW Australia 2164 PHONE +61-2-8784 8555 Facsimile +61-2-8784 8500
Environmental Division Sydney ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company

Page : 2 of 14 Work Order : ES1407306

Client : ENVIRON AUSTRALIA PTY LTD

Project : HYDRO BUFFER ZONE INVESTIGATION

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

- ALS is not NATA accredited for the analysis of Bifenthrin in soils when performed under ALS Method EP068D
- EA200 Legend
- EA200 'Am' Amosite (brown asbestos)
- EA200 'Ch' Chrysotile (white asbestos)
- EA200 'Cr' Crocidolite (blue asbestos)
- EA200 'Trace' Asbestos fibres detected by trace analysis per AS4964. The result can be interpreted that the sample contains detectable 'respirable' asbestos fibres
- EA200: 'UMF' Unknown Mineral Fibres. "-" indicates fibres detected may or may not be asbestos fibres. Confirmation by alternative techniques is recommended.
- EA200: Asbestos Identification Samples were analysed by Polarised Light Microscopy including dispersion staining.
- EA200: Negative results for vinyl tiles should be confirmed by an independent analytical technique.
- EA200Q: ALS laboratory procedures and methods used for the identification and quantitation of asbestos are consistent with AS4964-2004 and the requirements of the 2013 NEPM for Assessment of Site Contamination
- EA200Q: Asbestos weights and percentages are not covered under the Scope of NATA Accreditation.
 - Weights of Asbestos are based on extracted bulk asbestos, fibre bundles, and/or ACM and do not include respirable fibres (if present).

Percentages for Asbestos content in ACM are based on the 2013 NEPM default values. All numerical results under this method are approximate and should be used as a guide only.

Page : 3 of 14 Work Order : ES1407306

Client : ENVIRON AUSTRALIA PTY LTD

Project : HYDRO BUFFER ZONE INVESTIGATION

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	PARCEL 13 LOT 460 TP4	PARCEL 13 LOT 460 TP8	PARCEL 13 LOT 459 TP11	PARCEL 13 LOT 459 QA1	PARCEL 13 LOT 459 TP12
	Cli	ient samplii	ng date / time	31-MAR-2014 15:00	31-MAR-2014 15:00	31-MAR-2014 15:00	31-MAR-2014 15:00	31-MAR-2014 15:00
Compound	CAS Number	LOR	Unit	ES1407306-004	ES1407306-005	ES1407306-006	ES1407306-007	ES1407306-008
EA055: Moisture Content								
Moisture Content (dried @ 103°C)		1.0	%	18.9	13.7	19.9	21.2	25.4
EG005T: Total Metals by ICP-AES								
Arsenic	7440-38-2	5	mg/kg	8	14	14	10	18
Cadmium	7440-43-9	1	mg/kg	<1	<1	<1	<1	1
Chromium	7440-47-3	2	mg/kg	27	31	12	11	23
Copper	7440-50-8	5	mg/kg	<5	8	14	22	22
Lead	7439-92-1	5	mg/kg	14	16	13	21	56
Nickel	7440-02-0	2	mg/kg	4	4	6	7	13
Zinc	7440-66-6	5	mg/kg	362	119	283	455	535
EG035T: Total Recoverable Mercury b	v FIMS							:
Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
EP068A: Organochlorine Pesticides (C	(C)							
alpha-BHC	319-84-6	0.05	mg/kg	<0.05		<0.05	<0.05	<0.05
Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05		<0.05	<0.05	<0.05
beta-BHC	319-85-7	0.05	mg/kg	<0.05		<0.05	<0.05	<0.05
gamma-BHC	58-89-9	0.05	mg/kg	<0.05		<0.05	<0.05	<0.05
delta-BHC	319-86-8	0.05	mg/kg	<0.05		<0.05	<0.05	<0.05
Heptachlor	76-44-8	0.05	mg/kg	<0.05		<0.05	<0.05	<0.05
Aldrin	309-00-2	0.05	mg/kg	<0.05		<0.05	<0.05	<0.05
Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05		<0.05	<0.05	<0.05
^ Total Chlordane (sum)		0.05	mg/kg	<0.05		<0.05	<0.05	<0.05
trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05		<0.05	<0.05	<0.05
alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05		<0.05	<0.05	<0.05
cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05		<0.05	<0.05	<0.05
Dieldrin	60-57-1	0.05	mg/kg	<0.05		<0.05	<0.05	<0.05
4.4`-DDE	72-55-9	0.05	mg/kg	<0.05		<0.05	<0.05	<0.05
Endrin	72-20-8	0.05	mg/kg	<0.05		<0.05	<0.05	<0.05
beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05		<0.05	<0.05	<0.05
^ Endosulfan (sum)	115-29-7	0.05	mg/kg	<0.05		<0.05	<0.05	<0.05
4.4`-DDD	72-54-8	0.05	mg/kg	<0.05		<0.05	<0.05	<0.05
Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05		<0.05	<0.05	<0.05
Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05		<0.05	<0.05	<0.05
4.4`-DDT	50-29-3	0.2	mg/kg	<0.2		<0.2	<0.2	<0.2

Page : 4 of 14 Work Order : ES1407306

Client : ENVIRON AUSTRALIA PTY LTD

Project : HYDRO BUFFER ZONE INVESTIGATION

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	PARCEL 13 LOT 460 TP4	PARCEL 13 LOT 460 TP8	PARCEL 13 LOT 459 TP11	PARCEL 13 LOT 459 QA1	PARCEL 13 LOT 459 TP12
	Cli	ient samplii	ng date / time	31-MAR-2014 15:00	31-MAR-2014 15:00	31-MAR-2014 15:00	31-MAR-2014 15:00	31-MAR-2014 15:00
Compound	CAS Number	LOR	Unit	ES1407306-004	ES1407306-005	ES1407306-006	ES1407306-007	ES1407306-008
EP068A: Organochlorine Pesticide	s (OC) - Continued							
Endrin ketone	53494-70-5	0.05	mg/kg	<0.05		<0.05	<0.05	<0.05
Methoxychlor	72-43-5	0.2	mg/kg	<0.2		<0.2	<0.2	<0.2
^ Sum of Aldrin + Dieldrin	309-00-2/60-57-1	0.05	mg/kg	<0.05		<0.05	<0.05	<0.05
Sum of DDD + DDE + DDT		0.05	mg/kg	<0.05		<0.05	<0.05	<0.05
EP068B: Organophosphorus Pesti	cides (OP)							
Dichlorvos	62-73-7	0.05	mg/kg	<0.05		<0.05	<0.05	<0.05
Demeton-S-methyl	919-86-8	0.05	mg/kg	<0.05		<0.05	<0.05	<0.05
Monocrotophos	6923-22-4	0.2	mg/kg	<0.2		<0.2	<0.2	<0.2
Dimethoate	60-51-5	0.05	mg/kg	<0.05		<0.05	<0.05	<0.05
Diazinon	333-41-5	0.05	mg/kg	<0.05		<0.05	<0.05	<0.05
Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg	<0.05		<0.05	<0.05	<0.05
Parathion-methyl	298-00-0	0.2	mg/kg	<0.2		<0.2	<0.2	<0.2
Malathion	121-75-5	0.05	mg/kg	<0.05		<0.05	<0.05	<0.05
Fenthion	55-38-9	0.05	mg/kg	<0.05		<0.05	<0.05	<0.05
Chlorpyrifos	2921-88-2	0.05	mg/kg	<0.05		<0.05	<0.05	<0.05
Parathion	56-38-2	0.2	mg/kg	<0.2		<0.2	<0.2	<0.2
Pirimphos-ethyl	23505-41-1	0.05	mg/kg	<0.05		<0.05	<0.05	<0.05
Chlorfenvinphos	470-90-6	0.05	mg/kg	<0.05		<0.05	<0.05	<0.05
Bromophos-ethyl	4824-78-6	0.05	mg/kg	<0.05		<0.05	<0.05	<0.05
Fenamiphos	22224-92-6	0.05	mg/kg	<0.05		<0.05	<0.05	<0.05
Prothiofos	34643-46-4	0.05	mg/kg	<0.05		<0.05	<0.05	<0.05
Ethion	563-12-2	0.05	mg/kg	<0.05		<0.05	<0.05	<0.05
Carbophenothion	786-19-6	0.05	mg/kg	<0.05		<0.05	<0.05	<0.05
Azinphos Methyl	86-50-0	0.05	mg/kg	<0.05		<0.05	<0.05	<0.05
EP075(SIM)B: Polynuclear Aromati	c Hydrocarbons							
Naphthalene	91-20-3	0.5	mg/kg	<0.5		<0.5	<0.5	<0.5
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5		<0.5	<0.5	<0.5
Acenaphthene	83-32-9	0.5	mg/kg	<0.5		<0.5	<0.5	<0.5
Fluorene	86-73-7	0.5	mg/kg	<0.5		<0.5	<0.5	<0.5
Phenanthrene	85-01-8	0.5	mg/kg	<0.5		<0.5	<0.5	<0.5
Anthracene	120-12-7	0.5	mg/kg	<0.5		<0.5	<0.5	<0.5
Fluoranthene	206-44-0	0.5	mg/kg	<0.5		<0.5	<0.5	<0.5
Pyrene	129-00-0	0.5	mg/kg	<0.5		<0.5	<0.5	<0.5

Page : 5 of 14 Work Order : ES1407306

Client : ENVIRON AUSTRALIA PTY LTD

Project : HYDRO BUFFER ZONE INVESTIGATION

ALS

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	PARCEL 13 LOT 460 TP4	PARCEL 13 LOT 460 TP8	PARCEL 13 LOT 459 TP11	PARCEL 13 LOT 459 QA1	PARCEL 13 LOT 459 TP12
	Cli	ent sampli	ng date / time	31-MAR-2014 15:00	31-MAR-2014 15:00	31-MAR-2014 15:00	31-MAR-2014 15:00	31-MAR-2014 15:00
Compound	CAS Number	LOR	Unit	ES1407306-004	ES1407306-005	ES1407306-006	ES1407306-007	ES1407306-008
EP075(SIM)B: Polynuclear Aromatic Hyd	drocarbons - Cont	inued						
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5		<0.5	<0.5	<0.5
Chrysene	218-01-9	0.5	mg/kg	<0.5		<0.5	<0.5	<0.5
Benzo(b)fluoranthene	205-99-2	0.5	mg/kg	<0.5		<0.5	<0.5	<0.5
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5		<0.5	<0.5	<0.5
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5		<0.5	<0.5	<0.5
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5		<0.5	<0.5	<0.5
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5		<0.5	<0.5	<0.5
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5		<0.5	<0.5	<0.5
Sum of polycyclic aromatic hydrocarbons		0.5	mg/kg	<0.5		<0.5	<0.5	<0.5
^ Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5		<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	0.6		0.6	0.6	0.6
Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2		1.2	1.2	1.2
EP080/071: Total Petroleum Hydrocarbo	ns							
C6 - C9 Fraction		10	mg/kg	<10		<10	<10	<10
C10 - C14 Fraction		50	mg/kg	<50		<50	<50	<50
C15 - C28 Fraction		100	mg/kg	<100		<100	<100	<100
C29 - C36 Fraction		100	mg/kg	<100		<100	<100	<100
C10 - C36 Fraction (sum)		50	mg/kg	<50		<50	<50	<50
EP080/071: Total Recoverable Hydrocar	bons - NEPM 201	3						
C6 - C10 Fraction	C6_C10	10	mg/kg	<10		<10	<10	<10
C6 - C10 Fraction minus BTEX (F1)	C6_C10-BTEX	10	mg/kg	<10		<10	<10	<10
>C10 - C16 Fraction	>C10_C16	50	mg/kg	<50		<50	<50	<50
>C16 - C34 Fraction		100	mg/kg	<100		<100	<100	<100
>C34 - C40 Fraction		100	mg/kg	<100		<100	<100	<100
>C10 - C40 Fraction (sum)		50	mg/kg	<50		<50	<50	<50
^ >C10 - C16 Fraction minus Naphthalene (F2)		50	mg/kg	<50		<50	<50	<50
EP080: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2		<0.2	<0.2	<0.2
Toluene	108-88-3	0.5	mg/kg	<0.5		<0.5	<0.5	<0.5
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5		<0.5	<0.5	<0.5
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5		<0.5	<0.5	<0.5
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5		<0.5	<0.5	<0.5

Page : 6 of 14 Work Order : ES1407306

Client : ENVIRON AUSTRALIA PTY LTD

Project : HYDRO BUFFER ZONE INVESTIGATION

Sub-Matrix: SOIL (Matrix: SOIL)		Cli	ent sample ID	PARCEL 13 LOT 460 TP4	PARCEL 13 LOT 460 TP8	PARCEL 13 LOT 459 TP11	PARCEL 13 LOT 459 QA1	PARCEL 13 LOT 459 TP12
	Cli	ent sampli	ing date / time	31-MAR-2014 15:00	31-MAR-2014 15:00	31-MAR-2014 15:00	31-MAR-2014 15:00	31-MAR-2014 15:00
Compound	CAS Number	LOR	Unit	ES1407306-004	ES1407306-005	ES1407306-006	ES1407306-007	ES1407306-008
EP080: BTEXN - Continued								
Sum of BTEX		0.2	mg/kg	<0.2		<0.2	<0.2	<0.2
^ Total Xylenes	1330-20-7	0.5	mg/kg	<0.5		<0.5	<0.5	<0.5
Naphthalene	91-20-3	1	mg/kg	<1		<1	<1	<1
EP068S: Organochlorine Pesticide	Surrogate							
Dibromo-DDE	21655-73-2	0.1	%	88.5		82.0	84.9	72.2
EP068T: Organophosphorus Pestic	ide Surrogate							
DEF	78-48-8	0.1	%	88.6		82.8	78.6	79.5
EP075(SIM)S: Phenolic Compound	Surrogates							
Phenol-d6	13127-88-3	0.1	%	121		110	119	111
2-Chlorophenol-D4	93951-73-6	0.1	%	115		106	115	105
2.4.6-Tribromophenol	118-79-6	0.1	%	102		99.3	97.8	94.0
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.1	%	104		94.6	95.1	96.1
Anthracene-d10	1719-06-8	0.1	%	105		102	104	104
4-Terphenyl-d14	1718-51-0	0.1	%	120		116	117	117
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.1	%	111		85.1	89.8	85.5
Toluene-D8	2037-26-5	0.1	%	123		85.9	88.1	83.2
4-Bromofluorobenzene	460-00-4	0.1	%	119		81.4	79.7	79.6

Page : 7 of 14 Work Order : ES1407306

Client : ENVIRON AUSTRALIA PTY LTD

Project : HYDRO BUFFER ZONE INVESTIGATION

ALS

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	PARCEL 13 LOT 458 TP16	PARCEL 13 LOT 458 QA2	PARCEL 13 LOT 458 TP19	PARCEL 13 LOT 458 TP230	PARCEL 12 LOT 11 TP45
	Cli	ent samplii	ng date / time	01-APR-2014 15:00	01-APR-2014 15:00	01-APR-2014 15:00	01-APR-2014 15:00	02-APR-2014 15:00
Compound	CAS Number	LOR	Unit	ES1407306-009	ES1407306-011	ES1407306-012	ES1407306-014	ES1407306-031
EA055: Moisture Content								
Moisture Content (dried @ 103°C)		1.0	%	5.5	5.6	8.1	14.7	12.1
EG005T: Total Metals by ICP-AES								
Arsenic	7440-38-2	5	mg/kg	<5	<5	15	6	
Cadmium	7440-43-9	1	mg/kg	<1	<1	<1	<1	
Chromium	7440-47-3	2	mg/kg	9	5	10	16	
Copper	7440-50-8	5	mg/kg	<5	<5	34	16	
Lead	7439-92-1	5	mg/kg	12	9	17	25	
Nickel	7440-02-0	2	mg/kg	5	5	6	14	
Zinc	7440-66-6	5	mg/kg	160	130	362	572	
EG035T: Total Recoverable Mercury by	FIMS							
Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	
EP068A: Organochlorine Pesticides (OC	:)							
alpha-BHC	319-84-6	0.05	mg/kg	<0.05	<0.05		<0.05	
Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	<0.05		<0.05	
beta-BHC	319-85-7	0.05	mg/kg	<0.05	<0.05		<0.05	
gamma-BHC	58-89-9	0.05	mg/kg	<0.05	<0.05		<0.05	
delta-BHC	319-86-8	0.05	mg/kg	<0.05	<0.05		<0.05	
Heptachlor	76-44-8	0.05	mg/kg	<0.05	<0.05		<0.05	
Aldrin	309-00-2	0.05	mg/kg	<0.05	<0.05		<0.05	
Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	<0.05		<0.05	
^ Total Chlordane (sum)		0.05	mg/kg	<0.05	<0.05		<0.05	
trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	<0.05		<0.05	
alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	<0.05		<0.05	
cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	<0.05		<0.05	
Dieldrin	60-57-1	0.05	mg/kg	<0.05	<0.05		<0.05	
4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	<0.05		<0.05	
Endrin	72-20-8	0.05	mg/kg	<0.05	<0.05		<0.05	
beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	<0.05		<0.05	
^ Endosulfan (sum)	115-29-7	0.05	mg/kg	<0.05	<0.05		<0.05	
4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	<0.05		<0.05	
Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	<0.05		<0.05	
Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	<0.05		<0.05	
4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	<0.2		<0.2	

Page : 8 of 14 Work Order : ES1407306

Client : ENVIRON AUSTRALIA PTY LTD

Project : HYDRO BUFFER ZONE INVESTIGATION

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	PARCEL 13 LOT 458 TP16	PARCEL 13 LOT 458 QA2	PARCEL 13 LOT 458 TP19	PARCEL 13 LOT 458 TP230	PARCEL 12 LOT 11 TP45
	Cli	ent sampli	ng date / time	01-APR-2014 15:00	01-APR-2014 15:00	01-APR-2014 15:00	01-APR-2014 15:00	02-APR-2014 15:00
Compound	CAS Number	LOR	Unit	ES1407306-009	ES1407306-011	ES1407306-012	ES1407306-014	ES1407306-031
EP068A: Organochlorine Pesticides	s (OC) - Continued							
Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	<0.05		<0.05	
Methoxychlor	72-43-5	0.2	mg/kg	<0.2	<0.2		<0.2	
^ Sum of Aldrin + Dieldrin	309-00-2/60-57-1	0.05	mg/kg	<0.05	<0.05		<0.05	
Sum of DDD + DDE + DDT		0.05	mg/kg	<0.05	<0.05		<0.05	
EP068B: Organophosphorus Pestio	cides (OP)							
Dichlorvos	62-73-7	0.05	mg/kg	<0.05	<0.05		<0.05	
Demeton-S-methyl	919-86-8	0.05	mg/kg	<0.05	<0.05		<0.05	
Monocrotophos	6923-22-4	0.2	mg/kg	<0.2	<0.2		<0.2	
Dimethoate	60-51-5	0.05	mg/kg	<0.05	<0.05		<0.05	
Diazinon	333-41-5	0.05	mg/kg	<0.05	<0.05		<0.05	
Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg	<0.05	<0.05		<0.05	
Parathion-methyl	298-00-0	0.2	mg/kg	<0.2	<0.2		<0.2	
Malathion	121-75-5	0.05	mg/kg	<0.05	<0.05		<0.05	
Fenthion	55-38-9	0.05	mg/kg	<0.05	<0.05		<0.05	
Chlorpyrifos	2921-88-2	0.05	mg/kg	<0.05	<0.05		<0.05	
Parathion	56-38-2	0.2	mg/kg	<0.2	<0.2		<0.2	
Pirimphos-ethyl	23505-41-1	0.05	mg/kg	<0.05	<0.05		<0.05	
Chlorfenvinphos	470-90-6	0.05	mg/kg	<0.05	<0.05		<0.05	
Bromophos-ethyl	4824-78-6	0.05	mg/kg	<0.05	<0.05		<0.05	
Fenamiphos	22224-92-6	0.05	mg/kg	<0.05	<0.05		<0.05	
Prothiofos	34643-46-4	0.05	mg/kg	<0.05	<0.05		<0.05	
Ethion	563-12-2	0.05	mg/kg	<0.05	<0.05		<0.05	
Carbophenothion	786-19-6	0.05	mg/kg	<0.05	<0.05		<0.05	
Azinphos Methyl	86-50-0	0.05	mg/kg	<0.05	<0.05		<0.05	
EP075(SIM)B: Polynuclear Aromatic	c Hydrocarbons							
Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5		<0.5	<0.5
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5		<0.5	<0.5
Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5		<0.5	<0.5
Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5		<0.5	<0.5
Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5		<0.5	<0.5
Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5		<0.5	<0.5
Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5		<0.5	<0.5
Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5		<0.5	<0.5

Page : 9 of 14 Work Order : ES1407306

Client : ENVIRON AUSTRALIA PTY LTD

Project : HYDRO BUFFER ZONE INVESTIGATION

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	PARCEL 13 LOT 458 TP16	PARCEL 13 LOT 458 QA2	PARCEL 13 LOT 458 TP19	PARCEL 13 LOT 458 TP230	PARCEL 12 LOT 11 TP45
	Cli	ent samplii	ng date / time	01-APR-2014 15:00	01-APR-2014 15:00	01-APR-2014 15:00	01-APR-2014 15:00	02-APR-2014 15:00
Compound	CAS Number	LOR	Unit	ES1407306-009	ES1407306-011	ES1407306-012	ES1407306-014	ES1407306-031
EP075(SIM)B: Polynuclear Aromatic Hyd	drocarbons - Cont	inued						
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5		<0.5	<0.5
Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5		<0.5	<0.5
Benzo(b)fluoranthene	205-99-2	0.5	mg/kg	<0.5	<0.5		<0.5	<0.5
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5		<0.5	<0.5
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5		<0.5	<0.5
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5		<0.5	<0.5
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5		<0.5	<0.5
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5		<0.5	<0.5
[^] Sum of polycyclic aromatic hydrocarbons		0.5	mg/kg	<0.5	<0.5		<0.5	<0.5
[^] Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5		<0.5	<0.5
[^] Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	0.6	0.6		0.6	0.6
[^] Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2	1.2		1.2	1.2
EP080/071: Total Petroleum Hydrocarbo	ons							
C6 - C9 Fraction		10	mg/kg	<10	<10		<10	<10
C10 - C14 Fraction		50	mg/kg	<50	<50		<50	<50
C15 - C28 Fraction		100	mg/kg	<100	<100		<100	<100
C29 - C36 Fraction		100	mg/kg	<100	<100		<100	<100
C10 - C36 Fraction (sum)		50	mg/kg	<50	<50		<50	<50
EP080/071: Total Recoverable Hydrocar	bons - NEPM 201	3						
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10		<10	<10
^ C6 - C10 Fraction minus BTEX (F1)	C6_C10-BTEX	10	mg/kg	<10	<10		<10	<10
>C10 - C16 Fraction	>C10_C16	50	mg/kg	<50	<50		<50	<50
>C16 - C34 Fraction		100	mg/kg	<100	<100		<100	<100
>C34 - C40 Fraction		100	mg/kg	<100	<100		<100	<100
^ >C10 - C40 Fraction (sum)		50	mg/kg	<50	<50		<50	<50
>C10 - C16 Fraction minus Naphthalene (F2)		50	mg/kg	<50	<50		<50	<50
EP080: BTEXN Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2		<0.2	<0.2
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5		<0.5	<0.5
Ethylbenzene	100-66-3	0.5	mg/kg	<0.5	<0.5		<0.5	<0.5
	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5		<0.5	<0.5
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5		<0.5	<0.5
orano-Ayrene	90-47-0	0.0	mg/kg	-0.0	-0.0		-0.0	-0.0

Page : 10 of 14 Work Order : ES1407306

Client : ENVIRON AUSTRALIA PTY LTD

Project : HYDRO BUFFER ZONE INVESTIGATION

Sub-Matrix: SOIL (Matrix: SOIL)		Cli	ent sample ID	PARCEL 13 LOT 458 TP16	PARCEL 13 LOT 458 QA2	PARCEL 13 LOT 458 TP19	PARCEL 13 LOT 458 TP230	PARCEL 12 LOT 11 TP45
	Cli	ent sampli	ing date / time	01-APR-2014 15:00	01-APR-2014 15:00	01-APR-2014 15:00	01-APR-2014 15:00	02-APR-2014 15:00
Compound	CAS Number	LOR	Unit	ES1407306-009	ES1407306-011	ES1407306-012	ES1407306-014	ES1407306-031
EP080: BTEXN - Continued								
^ Sum of BTEX		0.2	mg/kg	<0.2	<0.2		<0.2	<0.2
^ Total Xylenes	1330-20-7	0.5	mg/kg	<0.5	<0.5		<0.5	<0.5
Naphthalene	91-20-3	1	mg/kg	<1	<1		<1	<1
EP068S: Organochlorine Pesticide S	Surrogate							
Dibromo-DDE	21655-73-2	0.1	%	101	81.4		91.8	
EP068T: Organophosphorus Pestici	ide Surrogate							
DEF	78-48-8	0.1	%	104	80.3		82.3	
EP075(SIM)S: Phenolic Compound S	Surrogates							
Phenol-d6	13127-88-3	0.1	%	116	116		116	111
2-Chlorophenol-D4	93951-73-6	0.1	%	110	108		111	105
2.4.6-Tribromophenol	118-79-6	0.1	%	95.3	88.7		94.7	97.2
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.1	%	94.8	93.1		94.4	103
Anthracene-d10	1719-06-8	0.1	%	95.6	101		104	96.2
4-Terphenyl-d14	1718-51-0	0.1	%	115	114		116	113
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.1	%	100	98.7		96.8	96.3
Toluene-D8	2037-26-5	0.1	%	97.8	94.0		93.5	93.2
4-Bromofluorobenzene	460-00-4	0.1	%	94.2	89.7		87.0	84.8

Page : 11 of 14 Work Order : ES1407306

Client : ENVIRON AUSTRALIA PTY LTD

Project : HYDRO BUFFER ZONE INVESTIGATION

ALS

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	PARCEL 12 LOT 10 TP50	PARCEL 12 LOT 10 QA1	 	
	Cli	ient sampli	ng date / time	03-APR-2014 15:00	03-APR-2014 15:00	 	
Compound	CAS Number	LOR	Unit	ES1407306-035	ES1407306-036	 	
EA055: Moisture Content							
Moisture Content (dried @ 103°C)		1.0	%	27.0	18.2	 	
EG005T: Total Metals by ICP-AES							
Arsenic	7440-38-2	5	mg/kg	<5	5	 	
Cadmium	7440-43-9	1	mg/kg	<1	<1	 	
Chromium	7440-47-3	2	mg/kg	7	13	 	
Copper	7440-50-8	5	mg/kg	16	23	 	
Lead	7439-92-1	5	mg/kg	<5	6	 	
Nickel	7440-02-0	2	mg/kg	4	8	 	
Zinc	7440-66-6	5	mg/kg	31	32	 	
EG035T: Total Recoverable Mercury by F	IMS						
Mercury	7439-97-6	0.1	mg/kg	0.2	0.3	 	
EP075(SIM)B: Polynuclear Aromatic Hydr	ocarbons						
Naphthalene	91-20-3	0.5	mg/kg	0.8	<0.5	 	
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	 	
Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	 	
Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	 	
Phenanthrene	85-01-8	0.5	mg/kg	7.0	0.8	 	
Anthracene	120-12-7	0.5	mg/kg	0.6	<0.5	 	
Fluoranthene	206-44-0	0.5	mg/kg	1.6	<0.5	 	
Pyrene	129-00-0	0.5	mg/kg	0.6	<0.5	 	
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	 	
Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	 	
Benzo(b)fluoranthene	205-99-2	0.5	mg/kg	<0.5	<0.5	 	
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	 	
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	 	
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	 	
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	 	
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	 	
Sum of polycyclic aromatic hydrocarbons		0.5	mg/kg	10.6	0.8	 	
^ Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	 	
^ Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	0.6	0.6	 	
Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2	1.2	 	
EP080/071: Total Petroleum Hydrocarbon	s						

Page : 12 of 14 Work Order : ES1407306

Client : ENVIRON AUSTRALIA PTY LTD

Project : HYDRO BUFFER ZONE INVESTIGATION

ALS

Sub-Matrix: SOIL (Matrix: SOIL)			ent sample ID	PARCEL 12 LOT 10 TP50	PARCEL 12 LOT 10 QA1	 	
	Cli	ent sampli	ng date / time	03-APR-2014 15:00	03-APR-2014 15:00	 	
Compound	CAS Number	LOR	Unit	ES1407306-035	ES1407306-036	 	
EP080/071: Total Petroleum Hydrocar	rbons - Continued						
C6 - C9 Fraction		10	mg/kg	<10	<10	 	
C10 - C14 Fraction		50	mg/kg	<50	<50	 	
C15 - C28 Fraction		100	mg/kg	<100	<100	 	
C29 - C36 Fraction		100	mg/kg	<100	<100	 	
C10 - C36 Fraction (sum)		50	mg/kg	<50	<50	 	
EP080/071: Total Recoverable Hydrod	carbons - NEPM 201	3					
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	 	
C6 - C10 Fraction minus BTEX (F1)	C6_C10-BTEX	10	mg/kg	<10	<10	 	
>C10 - C16 Fraction	>C10_C16	50	mg/kg	<50	<50	 	
>C16 - C34 Fraction		100	mg/kg	<100	<100	 	
>C34 - C40 Fraction		100	mg/kg	<100	<100	 	
^ >C10 - C40 Fraction (sum)		50	mg/kg	<50	<50	 	
^ >C10 - C16 Fraction minus Naphthalene (F2)		50	mg/kg	<50	<50	 	
EP080: BTEXN							
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	 	
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	 	
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	 	
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	 	
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	 	
^ Sum of BTEX		0.2	mg/kg	<0.2	<0.2	 	
^ Total Xylenes	1330-20-7	0.5	mg/kg	<0.5	<0.5	 	
Naphthalene	91-20-3	1	mg/kg	<1	<1	 	
EP075(SIM)S: Phenolic Compound Su	urrogates						
Phenol-d6	13127-88-3	0.1	%	111	118	 	
2-Chlorophenol-D4	93951-73-6	0.1	%	104	112	 	
2.4.6-Tribromophenol	118-79-6	0.1	%	94.0	97.8	 	
EP075(SIM)T: PAH Surrogates							
2-Fluorobiphenyl	321-60-8	0.1	%	90.5	96.6	 	
Anthracene-d10	1719-06-8	0.1	%	98.5	104	 	
4-Terphenyl-d14	1718-51-0	0.1	%	112	117	 	
EP080S: TPH(V)/BTEX Surrogates							
1.2-Dichloroethane-D4	17060-07-0	0.1	%	81.8	95.6	 	

Page : 13 of 14 Work Order : ES1407306

Client : ENVIRON AUSTRALIA PTY LTD

Project : HYDRO BUFFER ZONE INVESTIGATION

Sub-Matrix: SOIL (Matrix: SOIL)		Cli	ent sample ID	PARCEL 12 LOT 10	PARCEL 12 LOT 10	 	
				TP50	QA1		
	Client sampling date / time			03-APR-2014 15:00	03-APR-2014 15:00	 	
Compound	CAS Number	LOR	Unit	ES1407306-035	ES1407306-036	 	
EP080S: TPH(V)/BTEX Surrogates - Cont	inued						
Toluene-D8	2037-26-5	0.1	%	83.2	93.3	 	
4-Bromofluorobenzene	460-00-4	0.1	%	79.9	88.9	 	

Page : 14 of 14 Work Order : ES1407306

Client : ENVIRON AUSTRALIA PTY LTD

Project : HYDRO BUFFER ZONE INVESTIGATION

Surrogate Control Limits

Sub-Matrix: SOIL		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP068S: Organochlorine Pesticide Sui	rogate		
Dibromo-DDE	21655-73-2	49	147
EP068T: Organophosphorus Pesticide	Surrogate		
DEF	78-48-8	35	143
EP075(SIM)S: Phenolic Compound Su	rrogates		
Phenol-d6	13127-88-3	63	123
2-Chlorophenol-D4	93951-73-6	66	122
2.4.6-Tribromophenol	118-79-6	40	138
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	70	122
Anthracene-d10	1719-06-8	66	128
4-Terphenyl-d14	1718-51-0	65	129
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	72.8	133.2
Toluene-D8	2037-26-5	73.9	132.1
4-Bromofluorobenzene	460-00-4	71.6	130.0

QUALITY CONTROL REPORT

: ES1407306 **Work Order** Page : 1 of 15

Client Laboratory : Environmental Division Sydney **ENVIRON AUSTRALIA PTY LTD**

Contact · MR STEVE CADMAN Contact · Client Services

Address Address : 277-289 Woodpark Road Smithfield NSW Australia 2164 PO BOX 564

MAITLAND NSW. AUSTRALIA 2320

E-mail : scadman@environcorp.com E-mail : sydney@alsglobal.com

Telephone : +61 02 49344354 +61-2-8784 8555 Telephone Facsimile +61 02 49344359 Facsimile +61-2-8784 8500

Project : HYDRO BUFFER ZONE INVESTIGATION QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Site

C-O-C number **Date Samples Received** : 03-APR-2014 : ----Sampler : K.WOODS/S.CADMAN Issue Date : 15-APR-2014

Order number : AS130348

No. of samples received : 48

Quote number : SY/433/13 No. of samples analysed : 12

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

NATA Accredited Laboratory 825

Accredited for

compliance with

ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Celine Conceicao Senior Spectroscopist Sydney Inorganics Pabi Subba Senior Organic Chemist Sydney Inorganics Pabi Subba Senior Organic Chemist Sydney Organics Shobhna Chandra Metals Coordinator Sydney Inorganics

> Address 277-289 Woodpark Road Smithfield NSW Australia 2164 | PHONE +61-2-8784 8555 | Facsimile +61-2-8784 8500 Environmental Division Sydney ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company

Page : 2 of 15 Work Order : ES1407306

Client : ENVIRON AUSTRALIA PTY LTD

Project : HYDRO BUFFER ZONE INVESTIGATION

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Page : 3 of 15 Work Order : ES1407306

Client : ENVIRON AUSTRALIA PTY LTD

Project : HYDRO BUFFER ZONE INVESTIGATION

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR:-No Limit; Result between 10 and 20 times LOR:-0% - 50%; Result > 20 times LOR:-0% - 20%.

Sub-Matrix: SOIL		Laboratory Duplicate (DUP) Report								
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)	
EA055: Moisture Co	ontent (QC Lot: 3378696)									
ES1407278-003	Anonymous	EA055-103: Moisture Content (dried @ 103°C)		1.0	%	<1.0	<1.0	0.0	No Limit	
ES1407278-014	Anonymous	EA055-103: Moisture Content (dried @ 103°C)		1.0	%	<1.0	<1.0	0.0	No Limit	
EA055: Moisture Co	ontent (QC Lot: 3378697)									
ES1407306-012	PARCEL 13 LOT 458 TP19	EA055-103: Moisture Content (dried @ 103°C)		1.0	%	8.1	8.9	8.5	No Limit	
ES1407368-007	Anonymous	EA055-103: Moisture Content (dried @ 103°C)		1.0	%	<1.0	<1.0	0.0	No Limit	
EG005T: Total Meta	ls by ICP-AES (QC Lot: 3381	850)								
ES1407266-001	Anonymous	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.0	No Limit	
		EG005T: Chromium	7440-47-3	2	mg/kg	<2	<2	0.0	No Limit	
		EG005T: Nickel	7440-02-0	2	mg/kg	<2	<2	0.0	No Limit	
		EG005T: Arsenic	7440-38-2	5	mg/kg	<5	<5	0.0	No Limit	
		EG005T: Copper	7440-50-8	5	mg/kg	<5	<5	0.0	No Limit	
		EG005T: Lead	7439-92-1	5	mg/kg	<5	<5	0.0	No Limit	
		EG005T: Zinc	7440-66-6	5	mg/kg	<5	<5	0.0	No Limit	
ES1407302-006	Anonymous	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.0	No Limit	
		EG005T: Chromium	7440-47-3	2	mg/kg	14	15	7.6	No Limit	
		EG005T: Nickel	7440-02-0	2	mg/kg	48	46	4.4	0% - 20%	
		EG005T: Arsenic	7440-38-2	5	mg/kg	<5	<5	0.0	No Limit	
		EG005T: Copper	7440-50-8	5	mg/kg	29	28	0.0	No Limit	
		EG005T: Lead	7439-92-1	5	mg/kg	<5	<5	0.0	No Limit	
		EG005T: Zinc	7440-66-6	5	mg/kg	46	45	3.4	No Limit	
EG005T: Total Meta	ls by ICP-AES (QC Lot: 3381	852)								
ES1407306-012	PARCEL 13 LOT 458 TP19	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.0	No Limit	
		EG005T: Chromium	7440-47-3	2	mg/kg	10	10	0.0	No Limit	
		EG005T: Nickel	7440-02-0	2	mg/kg	6	6	0.0	No Limit	
		EG005T: Arsenic	7440-38-2	5	mg/kg	15	14	0.0	No Limit	
		EG005T: Copper	7440-50-8	5	mg/kg	34	36	7.7	No Limit	
		EG005T: Lead	7439-92-1	5	mg/kg	17	25	38.6	No Limit	
		EG005T: Zinc	7440-66-6	5	mg/kg	362	354	2.3	0% - 20%	
ES1407325-007	Anonymous	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.0	No Limit	
		EG005T: Chromium	7440-47-3	2	mg/kg	29	26	11.9	0% - 50%	
		EG005T: Nickel	7440-02-0	2	mg/kg	17	15	10.7	No Limit	
		EG005T: Arsenic	7440-38-2	5	mg/kg	5	<5	0.0	No Limit	
		EG005T: Copper	7440-50-8	5	mg/kg	20	17	18.0	No Limit	
		EG005T: Lead	7439-92-1	5	mg/kg	13	11	10.7	No Limit	
		EG005T: Zinc	7440-66-6	5	mg/kg	45	51	11.8	0% - 50%	

Page : 4 of 15 Work Order : ES1407306

Client : ENVIRON AUSTRALIA PTY LTD

Sub-Matrix: SOIL				Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EG035T: Total Reco	overable Mercury by FIMS (
ES1407266-001	Anonymous	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.0	No Limit
ES1407302-006	Anonymous	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.0	No Limit
EG035T: Total Reco	overable Mercury by FIMS (
ES1407306-012	PARCEL 13 LOT 458 TP19	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.0	No Limit
ES1407325-007	Anonymous	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.0	No Limit
	orine Pesticides (OC) (QC L								
ES1407420-003	Anonymous	•	319-84-6	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
L01407420-003	Anonymous	EP068: alpha-BHC EP068: Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: beta-BHC	319-85-7	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: gamma-BHC	58-89-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
			319-86-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: delta-BHC	76-44-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Heptachlor	309-00-2	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Aldrin	1024-57-3	0.05		<0.05	<0.05	0.0	No Limit
		EP068: Heptachlor epoxide	5103-74-2	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: trans-Chlordane	959-98-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: alpha-Endosulfan	5103-71-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: cis-Chlordane	60-57-1	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Dieldrin	72-55-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: 4.4`-DDE	72-33-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Endrin	33213-65-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: beta-Endosulfan	72-54-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: 4.4`-DDD	7421-93-4		mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Endrin aldehyde		0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Endosulfan sulfate	1031-07-8 53494-70-5	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Endrin ketone	50-29-3	0.03	mg/kg	<0.03	<0.2	0.0	No Limit
		EP068: 4.4`-DDT	72-43-5	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
ES1407420-011	Ananymaua	EP068: Methoxychlor	319-84-6	0.2	mg/kg	<0.25	<0.25	0.0	No Limit
E31407420-011	Anonymous	EP068: alpha-BHC	118-74-1	0.05	mg/kg	<0.25	<0.25	0.0	No Limit
		EP068: Hexachlorobenzene (HCB)	319-85-7	0.05	mg/kg	<0.25	<0.25	0.0	No Limit
		EP068: beta-BHC	58-89-9	0.05	mg/kg	<0.25	<0.25	0.0	No Limit
		EP068: gamma-BHC	319-86-8	0.05	mg/kg mg/kg	<0.25	<0.25	0.0	No Limit
		EP068: delta-BHC	76-44-8	0.05		<0.25	<0.25	0.0	No Limit
		EP068: Heptachlor	309-00-2	0.05	mg/kg	<0.25	<0.25	0.0	No Limit
		EP068: Aldrin	1024-57-3	0.05	mg/kg	<0.25	<0.25	0.0	No Limit
		EP068: Heptachlor epoxide	5103-74-2	0.05	mg/kg	<0.25	<0.25	0.0	No Limit
		EP068: trans-Chlordane	959-98-8	0.05	mg/kg	<0.25	<0.25	0.0	No Limit
		EP068: alpha-Endosulfan	5103-71-9	0.05	mg/kg	<0.25	<0.25	0.0	No Limit
		EP068: cis-Chlordane	60-57-1		mg/kg		<0.25		
		EP068: Dieldrin	72-55-9	0.05	mg/kg	<0.25 <0.25	<0.25 <0.25	0.0	No Limit
l	I	EP068: 4.4`-DDE	72-05-9	0.05	mg/kg	\U. 25	~ U.25	0.0	No Limit

Page : 5 of 15 Work Order : ES1407306

Client : ENVIRON AUSTRALIA PTY LTD

Sub-Matrix: SOIL									
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP068A: Organochl	orine Pesticides (OC)	(QC Lot: 3378345) - continued							
ES1407420-011	Anonymous	EP068: Endrin	72-20-8	0.05	mg/kg	<0.25	<0.25	0.0	No Limit
		EP068: beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.25	<0.25	0.0	No Limit
		EP068: 4.4`-DDD	72-54-8	0.05	mg/kg	<0.25	<0.25	0.0	No Limit
		EP068: Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.25	<0.25	0.0	No Limit
		EP068: Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.25	<0.25	0.0	No Limit
		EP068: Endrin ketone	53494-70-5	0.05	mg/kg	<0.25	<0.25	0.0	No Limit
		EP068: 4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP068: Methoxychlor	72-43-5	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
EP068B: Organopho	osphorus Pesticides (C	P) (QC Lot: 3378345)							
ES1407420-003	Anonymous	EP068: Dichlorvos	62-73-7	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Demeton-S-methyl	919-86-8	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Dimethoate	60-51-5	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Diazinon	333-41-5	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Malathion	121-75-5	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Fenthion	55-38-9	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Chlorpyrifos	2921-88-2	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Pirimphos-ethyl	23505-41-1	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Chlorfenvinphos	470-90-6	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Bromophos-ethyl	4824-78-6	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Fenamiphos	22224-92-6	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Prothiofos	34643-46-4	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Ethion	563-12-2	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Carbophenothion	786-19-6	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Azinphos Methyl	86-50-0	0.05	mg/kg	<0.05	<0.05	0.0	No Limit
		EP068: Monocrotophos	6923-22-4	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP068: Parathion-methyl	298-00-0	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP068: Parathion	56-38-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
ES1407420-011	Anonymous	EP068: Dichlorvos	62-73-7	0.05	mg/kg	<0.25	<0.25	0.0	No Limit
		EP068: Demeton-S-methyl	919-86-8	0.05	mg/kg	<0.25	<0.25	0.0	No Limit
		EP068: Dimethoate	60-51-5	0.05	mg/kg	<0.25	<0.25	0.0	No Limit
		EP068: Diazinon	333-41-5	0.05	mg/kg	<0.25	<0.25	0.0	No Limit
		EP068: Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg	<0.25	<0.25	0.0	No Limit
		EP068: Malathion	121-75-5	0.05	mg/kg	<0.25	<0.25	0.0	No Limit
		EP068: Fenthion	55-38-9	0.05	mg/kg	<0.25	<0.25	0.0	No Limit
		EP068: Chlorpyrifos	2921-88-2	0.05	mg/kg	<0.25	<0.25	0.0	No Limit
		EP068: Pirimphos-ethyl	23505-41-1	0.05	mg/kg	<0.25	<0.25	0.0	No Limit
		EP068: Chlorfenvinphos	470-90-6	0.05	mg/kg	<0.25	<0.25	0.0	No Limit
		EP068: Bromophos-ethyl	4824-78-6	0.05	mg/kg	<0.25	<0.25	0.0	No Limit
		EP068: Fenamiphos	22224-92-6	0.05	mg/kg	<0.25	<0.25	0.0	No Limit

Page : 6 of 15 Work Order : ES1407306

Client : ENVIRON AUSTRALIA PTY LTD

Sub-Matrix: SOIL									
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP068B: Organopho	osphorus Pesticides (OP) (C	QC Lot: 3378345) - continued							
ES1407420-011	Anonymous	EP068: Prothiofos	34643-46-4	0.05	mg/kg	<0.25	<0.25	0.0	No Limit
		EP068: Ethion	563-12-2	0.05	mg/kg	<0.25	<0.25	0.0	No Limit
		EP068: Carbophenothion	786-19-6	0.05	mg/kg	<0.25	<0.25	0.0	No Limit
		EP068: Azinphos Methyl	86-50-0	0.05	mg/kg	<0.25	<0.25	0.0	No Limit
		EP068: Monocrotophos	6923-22-4	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP068: Parathion-methyl	298-00-0	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP068: Parathion	56-38-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
P075(SIM)B: Polyn	uclear Aromatic Hydrocarbo	ons (QC Lot: 3378351)							
ES1407306-004	PARCEL 13 LOT 460 TP4	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(b)fluoranthene	205-99-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Sum of polycyclic aromatic		0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		hydrocarbons							
		EP075(SIM): Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	0.0	No Limit
S1407420-001	Anonymous	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	0.9	58.3	No Limit
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	0.6	0.7	17.9	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	1.4	1.4	0.0	No Limit
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	1.3	1.3	0.0	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	0.8	0.8	0.0	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	0.8	0.8	0.0	No Limit
		EP075(SIM): Benzo(b)fluoranthene	205-99-2	0.5	mg/kg	1.1	1.1	0.0	No Limit
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	0.8	0.8	0.0	No Limit

Page : 7 of 15 Work Order : ES1407306

Client : ENVIRON AUSTRALIA PTY LTD

Sub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP075(SIM)B: Polyn	uclear Aromatic Hydrocarbo	ons (QC Lot: 3378351) - continued							
ES1407420-001 Anonymous E		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	0.6	0.6	0.0	No Limit
		EP075(SIM): Sum of polycyclic aromatic		0.5	mg/kg	7.4	8.4	12.6	0% - 50%
		hydrocarbons							
		EP075(SIM): Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	1.0	1.0	0.0	No Limit
EP080/071: Total Pe	troleum Hydrocarbons (QC	Lot: 3377659)							
ES1407306-004	PARCEL 13 LOT 460 TP4	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.0	No Limit
ES1407368-021	Anonymous	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.0	No Limit
EP080/071: Total Pe	troleum Hydrocarbons (QC	Lot: 3378350)							
ES1407306-004	PARCEL 13 LOT 460 TP4	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.0	No Limit
ES1407420-001	Anonymous	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.0	No Limit
EP080/071: Total Re	coverable Hydrocarbons - N	IEPM 2013 (QC Lot: 3377659)							
ES1407306-004	PARCEL 13 LOT 460 TP4	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.0	No Limit
ES1407368-021	Anonymous	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.0	No Limit
EP080/071: Total Re	coverable Hydrocarbons - N	IEPM 2013 (QC Lot: 3378350)							
ES1407306-004	PARCEL 13 LOT 460 TP4	EP071: >C16 - C34 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: >C10 - C16 Fraction	>C10_C16	50	mg/kg	<50	<50	0.0	No Limit
ES1407420-001	Anonymous	EP071: >C16 - C34 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: >C10 - C16 Fraction	>C10_C16	50	mg/kg	<50	<50	0.0	No Limit
EP080: BTEXN (QC	Lot: 3377659)								
ES1407306-004	PARCEL 13 LOT 460 TP4	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.0	No Limit
ES1407368-021	Anonymous	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit

Page : 8 of 15 Work Order : ES1407306

Client : ENVIRON AUSTRALIA PTY LTD

Sub-Matrix: SOIL			Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)	
EP080: BTEXN (QC I	_ot: 3377659) - continued									
ES1407368-021	Anonymous	EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.0	No Limit	

Page : 9 of 15 Work Order : ES1407306

Client : ENVIRON AUSTRALIA PTY LTD

Project : HYDRO BUFFER ZONE INVESTIGATION

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report					
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)		
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High		
EG005T: Total Metals by ICP-AES (QCLot: 3381850)										
EG005T: Arsenic	7440-38-2	5	mg/kg	<5	21.7 mg/kg	109	92	130		
EG005T: Cadmium	7440-43-9	1	mg/kg	<1	4.64 mg/kg	106	87	121		
EG005T: Chromium	7440-47-3	2	mg/kg	<2	43.9 mg/kg	99.5	80	136		
EG005T: Copper	7440-50-8	5	mg/kg	<5	32.0 mg/kg	120	93	127		
EG005T: Lead	7439-92-1	5	mg/kg	<5	40.0 mg/kg	100	86	124		
EG005T: Nickel	7440-02-0	2	mg/kg	<2	55.0 mg/kg	107	93	131		
EG005T: Zinc	7440-66-6	5	mg/kg	<5	60.8 mg/kg	108	81	133		
EG005T: Total Metals by ICP-AES (QCLot: 3381852)										
EG005T: Arsenic	7440-38-2	5	mg/kg	<5	21.7 mg/kg	112	92	130		
EG005T: Cadmium	7440-43-9	1	mg/kg	<1	4.64 mg/kg	110	87	121		
EG005T: Chromium	7440-47-3	2	mg/kg	<2	43.9 mg/kg	103	80	136		
EG005T: Copper	7440-50-8	5	mg/kg	<5	32.0 mg/kg	116	93	127		
EG005T: Lead	7439-92-1	5	mg/kg	<5	40.0 mg/kg	108	86	124		
EG005T: Nickel	7440-02-0	2	mg/kg	<2	55.0 mg/kg	110	93	131		
EG005T: Zinc	7440-66-6	5	mg/kg	<5	60.8 mg/kg	108	81	133		
EG035T: Total Recoverable Mercury by FIMS (QCLot: 3	381851)									
EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	2.57 mg/kg	89.6	70	105		
EG035T: Total Recoverable Mercury by FIMS (QCLot: 3	(381853)									
EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	2.57 mg/kg	89.5	70	105		
EP068A: Organochlorine Pesticides (OC) (QCLot: 3378)	345)									
EP068: alpha-BHC	319-84-6	0.05	mg/kg	<0.05	0.5 mg/kg	90.1	71	113		
EP068: Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	0.5 mg/kg	91.2	66	122		
EP068: beta-BHC	319-85-7	0.05	mg/kg	<0.05	0.5 mg/kg	93.8	69	119		
EP068: gamma-BHC	58-89-9	0.05	mg/kg	<0.05	0.5 mg/kg	91.1	71	115		
EP068: delta-BHC	319-86-8	0.05	mg/kg	<0.05	0.5 mg/kg	85.2	65	113		
EP068: Heptachlor	76-44-8	0.05	mg/kg	<0.05	0.5 mg/kg	90.9	68	116		
EP068: Aldrin	309-00-2	0.05	mg/kg	<0.05	0.5 mg/kg	89.6	68	118		
EP068: Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	0.5 mg/kg	87.2	68	116		
EP068: trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	0.5 mg/kg	84.6	68	120		
EP068: alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	0.5 mg/kg	83.5	69	119		
EP068: cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	0.5 mg/kg	85.7	67	121		
EP068: Dieldrin	60-57-1	0.05	mg/kg	<0.05	0.5 mg/kg	85.2	66	118		
EP068: 4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	0.5 mg/kg	87.6	69	117		
EP068: Endrin	72-20-8	0.05	mg/kg	<0.05	0.5 mg/kg	83.4	67	123		
			39				-			

Page : 10 of 15 Work Order : ES1407306

Client : ENVIRON AUSTRALIA PTY LTD

Project : HYDRO BUFFER ZONE INVESTIGATION

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Recovery L	imits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP068A: Organochlorine Pesticides (OC) (QCLot: 3378345)	- continued							
EP068: beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	0.5 mg/kg	89.5	76	120
EP068: 4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	0.5 mg/kg	98.4	76	120
EP068: Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	0.5 mg/kg	86.5	57.3	115
EP068: Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	0.5 mg/kg	76.9	60	124
EP068: 4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	0.5 mg/kg	80.2	67	127
EP068: Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	0.5 mg/kg	83.1	65	123
EP068: Methoxychlor	72-43-5	0.2	mg/kg	<0.2	0.5 mg/kg	78.8	65	129
EP068B: Organophosphorus Pesticides (OP) (QCLot: 33783	345)							
EP068: Dichlorvos	62-73-7	0.05	mg/kg	<0.05	0.5 mg/kg	81.3	56	126
EP068: Demeton-S-methyl	919-86-8	0.05	mg/kg	<0.05	0.5 mg/kg	84.7	64	128
EP068: Monocrotophos	6923-22-4	0.2	mg/kg	<0.2	0.5 mg/kg	78.4	54	122
EP068: Dimethoate	60-51-5	0.05	mg/kg	<0.05	0.5 mg/kg	74.6	64	124
EP068: Diazinon	333-41-5	0.05	mg/kg	<0.05	0.5 mg/kg	77.4	73	117
EP068: Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg	<0.05	0.5 mg/kg	83.7	55	119
EP068: Parathion-methyl	298-00-0	0.2	mg/kg	<0.2	0.5 mg/kg	78.6	69	123
EP068: Malathion	121-75-5	0.05	mg/kg	<0.05	0.5 mg/kg	75.1	70	120
EP068: Fenthion	55-38-9	0.05	mg/kg	<0.05	0.5 mg/kg	84.2	71	115
EP068: Chlorpyrifos	2921-88-2	0.05	mg/kg	<0.05	0.5 mg/kg	81.6	68	114
EP068: Parathion	56-38-2	0.2	mg/kg	<0.2	0.5 mg/kg	81.9	68	122
EP068: Pirimphos-ethyl	23505-41-1	0.05	mg/kg	<0.05	0.5 mg/kg	82.1	69	115
EP068: Chlorfenvinphos	470-90-6	0.05	mg/kg	<0.05	0.5 mg/kg	81.4	70	118
EP068: Bromophos-ethyl	4824-78-6	0.05	mg/kg	<0.05	0.5 mg/kg	80.7	68	116
EP068: Fenamiphos	22224-92-6	0.05	mg/kg	<0.05	0.5 mg/kg	87.4	64	120
EP068: Prothiofos	34643-46-4	0.05	mg/kg	<0.05	0.5 mg/kg	80.8	68	116
EP068: Ethion	563-12-2	0.05	mg/kg	<0.05	0.5 mg/kg	83.3	70	118
EP068: Carbophenothion	786-19-6	0.05	mg/kg	<0.05	0.5 mg/kg	82.4	67	123
EP068: Azinphos Methyl	86-50-0	0.05	mg/kg	<0.05	0.5 mg/kg	82.2	42	126
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QCLot:	3378351)							
EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	4 mg/kg	94.6	80	124
EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	4 mg/kg	93.8	77	123
EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	4 mg/kg	88.8	79	123
EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	4 mg/kg	85.5	77	123
EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	4 mg/kg	93.5	79	123
EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	4 mg/kg	92.5	79	123
EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	4 mg/kg	94.0	79	123
EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	4 mg/kg	93.7	79	125
EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	4 mg/kg	91.8	73	121
EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	4 mg/kg	94.5	81	123
EP075(SIM): Benzo(b)fluoranthene	205-99-2	0.5	mg/kg	<0.5	4 mg/kg	85.8	70	118

Page : 11 of 15 Work Order : ES1407306

Client : ENVIRON AUSTRALIA PTY LTD

Project : HYDRO BUFFER ZONE INVESTIGATION

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LCS	S) Report	
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP075(SIM)B: Polynuclear Aromatic Hydrocarb	ons (QCLot: 3378351) - con	tinued						
EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	4 mg/kg	91.9	77	123
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	4 mg/kg	85.2	76	122
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	4 mg/kg	82.7	71	113
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	4 mg/kg	82.2	71.7	113
EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	4 mg/kg	84.6	72.4	114
EP080/071: Total Petroleum Hydrocarbons(QC	Lot: 3377659)							
EP080: C6 - C9 Fraction		10	mg/kg	<10	26 mg/kg	117	68.4	128
EP080/071: Total Petroleum Hydrocarbons(QC	Lot: 3378350)							
EP071: C10 - C14 Fraction		50	mg/kg	<50	200 mg/kg	87.2	71	131
EP071: C15 - C28 Fraction		100	mg/kg	<100	300 mg/kg	90.5	74	138
EP071: C29 - C36 Fraction		100	mg/kg	<100	200 mg/kg	82.6	64	128
EP080/071: Total Recoverable Hydrocarbons - I	NEPM 2013 (QCLot: 3377659	9)						
EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	31 mg/kg	116	68.4	128
EP080/071: Total Recoverable Hydrocarbons - I	NEPM 2013 (QCLot: 3378350	0)						
EP071: >C10 - C16 Fraction	>C10_C16	50	mg/kg	<50	250 mg/kg	85.0	70	130
EP071: >C16 - C34 Fraction		100	mg/kg	<100	350 mg/kg	90.0	74	138
EP071: >C34 - C40 Fraction		100	mg/kg	<100				
		50	mg/kg		150 mg/kg	72.9	63	131
EP080: BTEXN (QCLot: 3377659)								
EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	1 mg/kg	111	62	116
EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	1 mg/kg	108	62	128
EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	1 mg/kg	107	58	118
EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	2 mg/kg	104	60	120
	106-42-3							
EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	1 mg/kg	106	60	120
EP080: Naphthalene	91-20-3	1	mg/kg	<1	1 mg/kg	97.6	62	138

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL			Matrix Spike (MS) Report					
				Spike	SpikeRecovery(%)	Recovery Li	imits (%)	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High	
EG005T: Total Meta	als by ICP-AES (QCLot: 3381850)							
ES1407266-001	Anonymous	EG005T: Arsenic	7440-38-2	50 mg/kg	97.3	70	130	
		EG005T: Cadmium	7440-43-9	50 mg/kg	96.3	70	130	
		EG005T: Chromium	7440-47-3	50 mg/kg	99.5	70	130	

Page : 12 of 15 Work Order : ES1407306

Client : ENVIRON AUSTRALIA PTY LTD

Project : HYDRO BUFFER ZONE INVESTIGATION

Sub-Matrix: SOIL				Ma	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery L	imits (%)
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
G005T: Total Meta	als by ICP-AES (QCLot: 3381850) - continu	ed					
ES1407266-001	Anonymous	EG005T: Copper	7440-50-8	125 mg/kg	106	70	130
		EG005T: Lead	7439-92-1	125 mg/kg	95.1	70	130
		EG005T: Nickel	7440-02-0	50 mg/kg	86.4	70	130
		EG005T: Zinc	7440-66-6	125 mg/kg	93.8	70	130
G005T: Total Meta	als by ICP-AES (QCLot: 3381852)						
ES1407306-012	PARCEL 13 LOT 458 TP19	EG005T: Arsenic	7440-38-2	50 mg/kg	100	70	130
		EG005T: Cadmium	7440-43-9	50 mg/kg	103	70	130
		EG005T: Chromium	7440-47-3	50 mg/kg	106	70	130
		EG005T: Copper	7440-50-8	125 mg/kg	102	70	130
		EG005T: Lead	7439-92-1	125 mg/kg	104	70	130
		EG005T: Nickel	7440-02-0	50 mg/kg	97.9	70	130
		EG005T: Zinc	7440-66-6	125 mg/kg	83.9	70	130
G035T: Total Rec	overable Mercury by FIMS (QCLot: 338185	1)					
ES1407266-001	Anonymous	EG035T: Mercury	7439-97-6	5 mg/kg	97.6	70	130
G035T: Total Rec	overable Mercury by FIMS (QCLot: 338185	3)					
ES1407306-012	PARCEL 13 LOT 458 TP19	EG035T: Mercury	7439-97-6	5 mg/kg	99.0	70	130
P068A: Organoch	lorine Pesticides (OC) (QCLot: 3378345)						
ES1407420-003 Anonymous	EP068: gamma-BHC	58-89-9	0.5 mg/kg	102	70	130	
		EP068: Heptachlor	76-44-8	0.5 mg/kg	104	70	130
		EP068: Aldrin	309-00-2	0.5 mg/kg	107	70	130
		EP068: Dieldrin	60-57-1	0.5 mg/kg	103	70	130
		EP068: Endrin	72-20-8	2 mg/kg	104	70	130
		EP068: 4.4`-DDT	50-29-3	2 mg/kg	84.3	70	130
P068B: Organoph	osphorus Pesticides (OP) (QCLot: 337834	5)					
ES1407420-003	Anonymous	EP068: Diazinon	333-41-5	0.5 mg/kg	101	70	130
		EP068: Chlorpyrifos-methyl	5598-13-0	0.5 mg/kg	78.9	70	130
		EP068: Pirimphos-ethyl	23505-41-1	0.5 mg/kg	106	70	130
		EP068: Bromophos-ethyl	4824-78-6	0.5 mg/kg	71.3	70	130
		EP068: Prothiofos	34643-46-4	0.5 mg/kg	82.4	70	130
P075(SIM)B: Poly	nuclear Aromatic Hydrocarbons (QCLot: 3	378351)					
S1407306-004	PARCEL 13 LOT 460 TP4	EP075(SIM): Acenaphthene	83-32-9	10 mg/kg	92.4	70	130
		EP075(SIM): Pyrene	129-00-0	10 mg/kg	97.2	70	130
P080/071: Total P	etroleum Hydrocarbons (QCLot: 3377659)						
ES1407306-004	PARCEL 13 LOT 460 TP4	EP080: C6 - C9 Fraction		32.5 mg/kg	84.1	70	130
P080/071: Total P	etroleum Hydrocarbons(QCLot: 3378350)						
ES1407306-004	PARCEL 13 LOT 460 TP4	EP071: C10 - C14 Fraction		640 mg/kg	90.8	73	137
-0		EP071: C15 - C28 Fraction		3140 mg/kg	101	53	131

Page : 13 of 15 Work Order : ES1407306

Client : ENVIRON AUSTRALIA PTY LTD

Project : HYDRO BUFFER ZONE INVESTIGATION

Sub-Matrix: SOIL			Ma	atrix Spike (MS) Report	Matrix Spike (MS) Report					
				Spike	SpikeRecovery(%)	Recovery L	imits (%)			
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High			
EP080/071: Total l	Petroleum Hydrocarbons (QCLot: 3378350) - continue	d d								
ES1407306-004	PARCEL 13 LOT 460 TP4	EP071: C29 - C36 Fraction		2860 mg/kg	97.2	52	132			
EP080/071: Total l	Recoverable Hydrocarbons - NEPM 2013 (QCLot: 3377	659)								
ES1407306-004	PARCEL 13 LOT 460 TP4	EP080: C6 - C10 Fraction	C6_C10	37.5 mg/kg	80.9	70	130			
EP080/071: Total	Recoverable Hydrocarbons - NEPM 2013 (QCLot: 3378	350)								
ES1407306-004	ES1407306-004 PARCEL 13 LOT 460 TP4	EP071: >C10 - C16 Fraction	>C10_C16	850 mg/kg	112	73	137			
		EP071: >C16 - C34 Fraction		4800 mg/kg	98.9	53	131			
		EP071: >C34 - C40 Fraction		2400 mg/kg	82.0	52	132			
EP080: BTEXN (C	CLot: 3377659)									
ES1407306-004	PARCEL 13 LOT 460 TP4	EP080: Benzene	71-43-2	2.5 mg/kg	72.1	70	130			
		EP080: Toluene	108-88-3	2.5 mg/kg	72.2	70	130			
		EP080: Ethylbenzene	100-41-4	2.5 mg/kg	75.2	70	130			
		EP080: meta- & para-Xylene	108-38-3	2.5 mg/kg	74.1	70	130			
			106-42-3							
		EP080: ortho-Xylene	95-47-6	2.5 mg/kg	76.0	70	130			
		EP080: Naphthalene	91-20-3	2.5 mg/kg	70.7	70	130			

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

The quality control term Matrix Spike (MS) and Matrix Spike Duplicate (MSD) refers to intralaboratory split samples spiked with a representative set of target analytes. The purpose of these QC parameters are to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL					Matrix Spike (N	IS) and Matrix Sp	ike Duplicate	(MSD) Repor	t	
				Spike	Spike Red	covery (%)	Recovery	Limits (%)	RPD	Os (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control Limit
EP080/071: Total Pe	etroleum Hydrocarbons (QCLot: 3377659									
ES1407306-004	PARCEL 13 LOT 460 TP4	EP080: C6 - C9 Fraction		32.5 mg/kg	84.1		70	130		
EP080/071: Total Ro	ecoverable Hydrocarbons - NEPM 2013(0									
ES1407306-004	PARCEL 13 LOT 460 TP4	EP080: C6 - C10 Fraction	C6_C10	37.5 mg/kg	80.9		70	130		
EP080: BTEXN (QC	CLot: 3377659)									
ES1407306-004	PARCEL 13 LOT 460 TP4	EP080: Benzene	71-43-2	2.5 mg/kg	72.1		70	130		
		EP080: Toluene	108-88-3	2.5 mg/kg	72.2		70	130		
		EP080: Ethylbenzene	100-41-4	2.5 mg/kg	75.2		70	130		
		EP080: meta- & para-Xylene	108-38-3	2.5 mg/kg	74.1		70	130		
			106-42-3							
		EP080: ortho-Xylene	95-47-6	2.5 mg/kg	76.0		70	130		
		EP080: Naphthalene	91-20-3	2.5 mg/kg	70.7		70	130		
EP068A: Organoch	lorine Pesticides (OC) (QCLot: 3378345)									
ES1407420-003	Anonymous	EP068: gamma-BHC	58-89-9	0.5 mg/kg	102		70	130		

Page : 14 of 15 Work Order : ES1407306

Client : ENVIRON AUSTRALIA PTY LTD

Project : HYDRO BUFFER ZONE INVESTIGATION

Sub-Matrix: SOIL					Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report						
				Spike	Spike Red	covery (%)	Recovery	Limits (%)	RP	Ds (%)	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control Limi	
EP068A: Organoch	lorine Pesticides (OC) (QCLot: 3	378345) - continued									
ES1407420-003	Anonymous	EP068: Heptachlor	76-44-8	0.5 mg/kg	104		70	130			
		EP068: Aldrin	309-00-2	0.5 mg/kg	107		70	130			
		EP068: Dieldrin	60-57-1	0.5 mg/kg	103		70	130			
		EP068: Endrin	72-20-8	2 mg/kg	104		70	130			
		EP068: 4.4`-DDT	50-29-3	2 mg/kg	84.3		70	130			
EP068B: Organoph	nosphorus Pesticides (OP) (QCLo	ot: 3378345)									
ES1407420-003	Anonymous	EP068: Diazinon	333-41-5	0.5 mg/kg	101		70	130			
		EP068: Chlorpyrifos-methyl	5598-13-0	0.5 mg/kg	78.9		70	130			
		EP068: Pirimphos-ethyl	23505-41-1	0.5 mg/kg	106		70	130			
		EP068: Bromophos-ethyl	4824-78-6	0.5 mg/kg	71.3		70	130			
		EP068: Prothiofos	34643-46-4	0.5 mg/kg	82.4		70	130			
EP080/071: Total P	etroleum Hydrocarbons (QCLot:	3378350)									
ES1407306-004	PARCEL 13 LOT 460 TP4	EP071: C10 - C14 Fraction		640 mg/kg	90.8		73	137			
		EP071: C15 - C28 Fraction		3140 mg/kg	101		53	131			
		EP071: C29 - C36 Fraction		2860 mg/kg	97.2		52	132			
FP080/071: Total R	ecoverable Hydrocarbons - NEPA	M 2013 (QCL ot: 3378350)									
ES1407306-004	PARCEL 13 LOT 460 TP4	EP071: >C10 - C16 Fraction	>C10 C16	850 mg/kg	112		73	137			
		EP071: >C16 - C34 Fraction		4800 mg/kg	98.9		53	131			
		EP071: >C34 - C40 Fraction		2400 mg/kg	82.0		52	132			
EP075(SIM)B: Poly	nuclear Aromatic Hydrocarbons			0 0							
ES1407306-004	PARCEL 13 LOT 460 TP4		83-32-9	10 mg/kg	92.4		70	130			
L31407300-004	PARCEL 13 EOT 400 TF4	EP075(SIM): Acenaphthene	129-00-0	10 mg/kg	97.2		70	130			
	1 1 100 150 (00) (00)(00)	EP075(SIM): Pyrene	123 00 0	10 mg/kg	37.2		70	100			
	als by ICP-AES (QCLot: 3381850)		7440.00.0	50 mm m/l m	07.2	I	70	420			
ES1407266-001	Anonymous	EG005T: Arsenic	7440-38-2	50 mg/kg	97.3		70	130			
		EG005T: Cadmium	7440-43-9	50 mg/kg	96.3		70	130 130			
		EG005T: Chromium	7440-47-3 7440-50-8	50 mg/kg 125 mg/kg	99.5		70 70	130			
		EG005T: Copper	7440-30-8	125 mg/kg 125 mg/kg	95.1		70	130			
		EG005T: Lead	7440-02-0	50 mg/kg	86.4		70	130			
		EG005T: Nickel EG005T: Zinc	7440-66-6	125 mg/kg	93.8		70	130			
			7440-00-0	125 Hig/kg	90.0		70	130			
EG035T: Total Rec ES1407266-001	coverable Mercury by FIMS (QCL		7420.07.0	5 mm m // mm	07.0	I	70	420			
	Anonymous	EG035T: Mercury	7439-97-6	5 mg/kg	97.6		70	130			
	als by ICP-AES (QCLot: 3381852)										
ES1407306-012	PARCEL 13 LOT 458 TP19	EG005T: Arsenic	7440-38-2	50 mg/kg	100		70	130			
		EG005T: Cadmium	7440-43-9	50 mg/kg	103		70	130			
		EG005T: Chromium	7440-47-3	50 mg/kg	106		70	130			
		EG005T: Copper	7440-50-8	125 mg/kg	102		70	130			
		EG005T: Lead	7439-92-1	125 mg/kg	104		70	130			

Page : 15 of 15 Work Order : ES1407306

Client : ENVIRON AUSTRALIA PTY LTD

Project : HYDRO BUFFER ZONE INVESTIGATION

Sub-Matrix: SOIL				Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report						
				Spike	Spike Red	covery (%)	Recovery	Limits (%)	RPL	Ds (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control Limit
EG005T: Total Meta	ils by ICP-AES (QCLot: 3381852) - conti									
ES1407306-012	PARCEL 13 LOT 458 TP19	EG005T: Nickel	7440-02-0	50 mg/kg	97.9		70	130		
		EG005T: Zinc	7440-66-6	125 mg/kg	83.9		70	130		
EG035T: Total Rec	G035T: Total Recoverable Mercury by FIMS (QCLot: 3381853)									
ES1407306-012	PARCEL 13 LOT 458 TP19	EG035T: Mercury	7439-97-6	5 mg/kg	99.0		70	130		

INTERPRETIVE QUALITY CONTROL REPORT

Work Order : **ES1407306** Page : 1 of 7

Client : ENVIRON AUSTRALIA PTY LTD Laboratory : Environmental Division Sydney

Contact : MR STEVE CADMAN Contact : Client Services

Address : PO BOX 564 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

MAITLAND NSW, AUSTRALIA 2320

 Telephone
 : +61 02 49344354
 Telephone
 : +61-2-8784 8555

 Facsimile
 : +61 02 49344359
 Facsimile
 : +61-2-8784 8500

Project : HYDRO BUFFER ZONE INVESTIGATION QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Site : ----

C-O-C number : ---- Date Samples Received : 03-APR-2014

Sampler : K.WOODS/S.CADMAN Issue Date : 15-APR-2014

Order number : AS130348

No. of samples received : 48

Quote number : SY/433/13 No. of samples analysed : 12

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Interpretive Quality Control Report contains the following information:

- Analysis Holding Time Compliance
- Quality Control Parameter Frequency Compliance
- Brief Method Summaries
- Summary of Outliers

Address 277-289 Woodpark Road Smithfield NSW Australia 2164 | PHONE +61-2-8784 8555 | Facsimile +61-2-8784 8500 Environmental Division Sydney ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company

Page : 2 of 7 Work Order : ES1407306

Client : ENVIRON AUSTRALIA PTY LTD

Project : HYDRO BUFFER ZONE INVESTIGATION

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with recommended holding times (USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: SOIL					Evaluation	× = Holding time	breach ; ✓ = Withir	n holding tin
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA055: Moisture Content								
Soil Glass Jar - Unpreserved (EA055-103)							45 400 0044	
PARCEL 13 LOT 458 TP16,	PARCEL 13 LOT 458 QA2,	01-APR-2014				07-APR-2014	15-APR-2014	✓
PARCEL 13 LOT 458 TP19,	PARCEL 13 LOT 458 TP230							
Soil Glass Jar - Unpreserved (EA055-103)		02-APR-2014				07-APR-2014	16-APR-2014	
PARCEL 12 LOT 11 TP45		02-APR-2014				07-APR-2014	10-APR-2014	✓
Soil Glass Jar - Unpreserved (EA055-103) PARCEL 12 LOT 10 TP50,	PARCEL 12 LOT 10 QA1	03-APR-2014				07-APR-2014	17-APR-2014	,
· · · · · · · · · · · · · · · · · · ·	PARCEL 12 LOT 10 QAT	05-AFR-2014				07-AFR-2014	17-7(11-2014	✓
Soil Glass Jar - Unpreserved (EA055-103) PARCEL 13 LOT 460 TP4,	PARCEL 13 LOT 460 TP8,	31-MAR-2014				07-APR-2014	14-APR-2014	1
PARCEL 13 LOT 459 TP11.	PARCEL 13 LOT 459 QA1.	01 mate 2014				07 74 14 2014		Y
PARCEL 13 LOT 459 TP12	TAROLL IS LOT 409 QAT,							
EG005T: Total Metals by ICP-AES								
Soil Glass Jar - Unpreserved (EG005T)								
PARCEL 13 LOT 458 TP16,	PARCEL 13 LOT 458 QA2,	01-APR-2014	09-APR-2014	28-SEP-2014	1	09-APR-2014	28-SEP-2014	1
PARCEL 13 LOT 458 TP19,	PARCEL 13 LOT 458 TP230							,
Soil Glass Jar - Unpreserved (EG005T)								
PARCEL 12 LOT 10 TP50,	PARCEL 12 LOT 10 QA1	03-APR-2014	09-APR-2014	30-SEP-2014	✓	09-APR-2014	30-SEP-2014	✓
Soil Glass Jar - Unpreserved (EG005T)								
PARCEL 13 LOT 460 TP4,	PARCEL 13 LOT 460 TP8,	31-MAR-2014	09-APR-2014	27-SEP-2014	✓	09-APR-2014	27-SEP-2014	✓
PARCEL 13 LOT 459 TP11,	PARCEL 13 LOT 459 QA1,							
PARCEL 13 LOT 459 TP12								
EG035T: Total Recoverable Mercury by FIMS								
Soil Glass Jar - Unpreserved (EG035T)								
PARCEL 13 LOT 458 TP16,	PARCEL 13 LOT 458 QA2,	01-APR-2014	09-APR-2014	29-APR-2014	✓	10-APR-2014	29-APR-2014	✓
PARCEL 13 LOT 458 TP19,	PARCEL 13 LOT 458 TP230							
Soil Glass Jar - Unpreserved (EG035T)								
PARCEL 12 LOT 10 TP50,	PARCEL 12 LOT 10 QA1	03-APR-2014	09-APR-2014	01-MAY-2014	✓	10-APR-2014	01-MAY-2014	✓
Soil Glass Jar - Unpreserved (EG035T)								
PARCEL 13 LOT 460 TP4,	PARCEL 13 LOT 460 TP8,	31-MAR-2014	09-APR-2014	28-APR-2014	✓	10-APR-2014	28-APR-2014	✓
PARCEL 13 LOT 459 TP11,	PARCEL 13 LOT 459 QA1,							
PARCEL 13 LOT 459 TP12								

Page : 3 of 7
Work Order : ES1407306

Client : ENVIRON AUSTRALIA PTY LTD

Project : HYDRO BUFFER ZONE INVESTIGATION

Matrix: SOIL Evaluation: **x** = Holding time breach ; ✓ = Within holding time. Method Sample Date Extraction / Preparation Analysis Container / Client Sample ID(s) Due for extraction Evaluation Date analysed Due for analysis Evaluation Date extracted EP068A: Organochlorine Pesticides (OC) Soil Glass Jar - Unpreserved (EP068) 01-APR-2014 15-APR-2014 PARCEL 13 LOT 458 TP16. 07-APR-2014 08-APR-2014 17-MAY-2014 PARCEL 13 LOT 458 QA2. 1 1 PARCEL 13 LOT 458 TP230 Soil Glass Jar - Unpreserved (EP068) 31-MAR-2014 07-APR-2014 14-APR-2014 1 08-APR-2014 17-MAY-2014 PARCEL 13 LOT 460 TP4, PARCEL 13 LOT 459 TP11, PARCEL 13 LOT 459 QA1. PARCEL 13 LOT 459 TP12 EP068B: Organophosphorus Pesticides (OP) Soil Glass Jar - Unpreserved (EP068) 01-APR-2014 07-APR-2014 15-APR-2014 08-APR-2014 17-MAY-2014 PARCEL 13 LOT 458 TP16. 1 PARCEL 13 LOT 458 QA2. PARCEL 13 LOT 458 TP230 Soil Glass Jar - Unpreserved (EP068) 14-APR-2014 17-MAY-2014 PARCEL 13 LOT 460 TP4. 31-MAR-2014 07-APR-2014 1 08-APR-2014 PARCEL 13 LOT 459 TP11. PARCEL 13 LOT 459 TP12 PARCEL 13 LOT 459 QA1. EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Soil Glass Jar - Unpreserved (EP071) PARCEL 13 LOT 458 QA2, 01-APR-2014 07-APR-2014 15-APR-2014 08-APR-2014 17-MAY-2014 PARCEL 13 LOT 458 TP16, PARCEL 13 LOT 458 TP230 Soil Glass Jar - Unpreserved (EP071) 02-APR-2014 07-APR-2014 16-APR-2014 17-MAY-2014 PARCEL 12 LOT 11 TP45 1 08-APR-2014 Soil Glass Jar - Unpreserved (EP071) PARCEL 12 LOT 10 TP50, PARCEL 12 LOT 10 QA1 03-APR-2014 07-APR-2014 17-APR-2014 08-APR-2014 17-MAY-2014 Soil Glass Jar - Unpreserved (EP071) 14-APR-2014 08-APR-2014 17-MAY-2014 PARCEL 13 LOT 460 TP4. PARCEL 13 LOT 459 TP11. 31-MAR-2014 07-APR-2014 PARCEL 13 LOT 459 QA1, PARCEL 13 LOT 459 TP12 EP075(SIM)B: Polynuclear Aromatic Hydrocarbons Soil Glass Jar - Unpreserved (EP075(SIM)) 01-APR-2014 07-APR-2014 15-APR-2014 08-APR-2014 17-MAY-2014 PARCEL 13 LOT 458 TP16, 1 PARCEL 13 LOT 458 QA2, PARCEL 13 LOT 458 TP230 Soil Glass Jar - Unpreserved (EP075(SIM)) 02-APR-2014 07-APR-2014 16-APR-2014 08-APR-2014 17-MAY-2014 1 PARCEL 12 LOT 11 TP45 Soil Glass Jar - Unpreserved (EP075(SIM)) 03-APR-2014 07-APR-2014 17-APR-2014 08-APR-2014 17-MAY-2014 PARCEL 12 LOT 10 TP50. PARCEL 12 LOT 10 QA1 Soil Glass Jar - Unpreserved (EP075(SIM)) 31-MAR-2014 07-APR-2014 14-APR-2014 1 08-APR-2014 17-MAY-2014 PARCEL 13 LOT 460 TP4, PARCEL 13 LOT 459 TP11, **√** PARCEL 13 LOT 459 QA1. PARCEL 13 LOT 459 TP12

Page : 4 of 7
Work Order : ES1407306

Client : ENVIRON AUSTRALIA PTY LTD

Project : HYDRO BUFFER ZONE INVESTIGATION

Matrix: SOIL					Evaluation	: × = Holding time	breach ; ✓ = Withir	holding time
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP080: BTEXN								
Soil Glass Jar - Unpreserved (EP080) PARCEL 13 LOT 458 TP16,	PARCEL 13 LOT 458 QA2,	01-APR-2014	07-APR-2014	15-APR-2014	✓	08-APR-2014	15-APR-2014	✓
PARCEL 13 LOT 458 TP230								
Soil Glass Jar - Unpreserved (EP080) PARCEL 12 LOT 11 TP45		02-APR-2014	07-APR-2014	16-APR-2014	1	08-APR-2014	16-APR-2014	✓
Soil Glass Jar - Unpreserved (EP080) PARCEL 12 LOT 10 TP50,	PARCEL 12 LOT 10 QA1	03-APR-2014	07-APR-2014	17-APR-2014	✓	08-APR-2014	17-APR-2014	√
Soil Glass Jar - Unpreserved (EP080) PARCEL 13 LOT 460 TP4, PARCEL 13 LOT 459 QA1,	PARCEL 13 LOT 459 TP11, PARCEL 13 LOT 459 TP12	31-MAR-2014	07-APR-2014	14-APR-2014	✓	08-APR-2014	14-APR-2014	✓
EP080/071: Total Recoverable Hydrocarbons - I	NEPM 2013							
Soil Glass Jar - Unpreserved (EP080) PARCEL 13 LOT 458 TP16, PARCEL 13 LOT 458 TP230	PARCEL 13 LOT 458 QA2,	01-APR-2014	07-APR-2014	15-APR-2014	✓	08-APR-2014	15-APR-2014	✓
Soil Glass Jar - Unpreserved (EP080) PARCEL 12 LOT 11 TP45		02-APR-2014	07-APR-2014	16-APR-2014	✓	08-APR-2014	16-APR-2014	✓
Soil Glass Jar - Unpreserved (EP080) PARCEL 12 LOT 10 TP50,	PARCEL 12 LOT 10 QA1	03-APR-2014	07-APR-2014	17-APR-2014	✓	08-APR-2014	17-APR-2014	√
Soil Glass Jar - Unpreserved (EP080) PARCEL 13 LOT 460 TP4, PARCEL 13 LOT 459 QA1,	PARCEL 13 LOT 459 TP11, PARCEL 13 LOT 459 TP12	31-MAR-2014	07-APR-2014	14-APR-2014	✓	08-APR-2014	14-APR-2014	✓

Page : 5 of 7
Work Order : ES1407306

Client : ENVIRON AUSTRALIA PTY LTD

Project : HYDRO BUFFER ZONE INVESTIGATION

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(where) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: **SOIL**Evaluation: × = Quality Control frequency not within specification; ✓ = Quality Control frequency within specification.

Quality Control Sample Type		Co	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Regular	Actual	Expected	Evaluation	
aboratory Duplicates (DUP)							
Moisture Content	EA055-103	4	40	10.0	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
PAH/Phenols (SIM)	EP075(SIM)	2	18	11.1	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Pesticides by GCMS	EP068	2	18	11.1	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
otal Mercury by FIMS	EG035T	4	34	11.8	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Total Metals by ICP-AES	EG005T	4	34	11.8	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
PH - Semivolatile Fraction	EP071	2	20	10.0	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
PH Volatiles/BTEX	EP080	2	19	10.5	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
aboratory Control Samples (LCS)							
PAH/Phenols (SIM)	EP075(SIM)	1	18	5.6	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
esticides by GCMS	EP068	1	18	5.6	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
otal Mercury by FIMS	EG035T	2	34	5.9	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
otal Metals by ICP-AES	EG005T	2	34	5.9	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
PH - Semivolatile Fraction	EP071	1	20	5.0	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
PH Volatiles/BTEX	EP080	1	19	5.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
lethod Blanks (MB)							
AH/Phenols (SIM)	EP075(SIM)	1	18	5.6	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
esticides by GCMS	EP068	1	18	5.6	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
otal Mercury by FIMS	EG035T	2	34	5.9	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
otal Metals by ICP-AES	EG005T	2	34	5.9	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
PH - Semivolatile Fraction	EP071	1	20	5.0	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
PH Volatiles/BTEX	EP080	1	19	5.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
latrix Spikes (MS)							
AH/Phenols (SIM)	EP075(SIM)	1	18	5.6	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
esticides by GCMS	EP068	1	18	5.6	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
otal Mercury by FIMS	EG035T	2	34	5.9	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
otal Metals by ICP-AES	EG005T	2	34	5.9	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
PH - Semivolatile Fraction	EP071	1	20	5.0	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
PH Volatiles/BTEX	EP080	1	19	5.3	5.0	√	NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Page : 6 of 7
Work Order : ES1407306

Client : ENVIRON AUSTRALIA PTY LTD

Project : HYDRO BUFFER ZONE INVESTIGATION

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055-103	SOIL	A gravimetric procedure based on weight loss over a 12 hour drying period at 103-105 degrees C. This method is compliant with NEPM (2013) Schedule B(3) Section 7.1 and Table 1 (14 day holding time).
Total Metals by ICP-AES	EG005T	SOIL	(APHA 21st ed., 3120; USEPA SW 846 - 6010) (ICPAES) Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM (2013) Schedule B(3)
Total Mercury by FIMS	EG035T	SOIL	AS 3550, APHA 21st ed., 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3)
Pesticides by GCMS	EP068	SOIL	(USEPA SW 846 - 8270B) Extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This technique is compliant with NEPM (2013) Schedule B(3) (Method 504,505)
TPH - Semivolatile Fraction	EP071	SOIL	(USEPA SW 846 - 8015A) Sample extracts are analysed by Capillary GC/FID and quantified against alkane standards over the range C10 - C36. This method is compliant with NEPM (2013) Schedule B(3) (Method 506.1)
PAH/Phenols (SIM)	EP075(SIM)	SOIL	(USEPA SW 846 - 8270B) Extracts are analysed by Capillary GC/MS in Selective Ion Mode (SIM) and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3) (Method 502 and 507)
TPH Volatiles/BTEX	EP080	SOIL	(USEPA SW 846 - 8260B) Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3) (Method 501)
Preparation Methods	Method	Matrix	Method Descriptions
Methanolic Extraction of Soils for Purge and Trap	* ORG16	SOIL	(USEPA SW 846 - 5030A) 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.
Tumbler Extraction of Solids (Option A - Concentrating)	ORG17A	SOIL	In-house, Mechanical agitation (tumbler). 20g of sample, Na2SO4 and surrogate are extracted with 150mL 1:1 DCM/Acetone by end over end tumble. The solvent is decanted, dehydrated and concentrated (by KD) to the desired volume for analysis.
Tumbler Extraction of Solids (Option B - Non-concentrating)	ORG17B	SOIL	In-house, Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 20mL 1:1 DCM/Acetone by end over end tumble. The solvent is transferred directly to a GC vial for analysis.

Page : 7 of 7
Work Order : ES1407306

Client : ENVIRON AUSTRALIA PTY LTD

Project : HYDRO BUFFER ZONE INVESTIGATION

Summary of Outliers

Outliers: Quality Control Samples

The following report highlights outliers flagged in the Quality Control (QC) Report. Surrogate recovery limits are static and based on USEPA SW 846 or ALS-QWI/EN/38 (in the absence of specific USEPA limits). This report displays QC Outliers (breaches) only.

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

- For all matrices, no Method Blank value outliers occur.
- For all matrices, no Duplicate outliers occur.
- For all matrices, no Laboratory Control outliers occur.
- For all matrices, no Matrix Spike outliers occur.

Regular Sample Surrogates

• For all regular sample matrices, no surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

This report displays Holding Time breaches only. Only the respective Extraction / Preparation and/or Analysis component is/are displayed.

No Analysis Holding Time Outliers exist.

Outliers: Frequency of Quality Control Samples

The following report highlights breaches in the Frequency of Quality Control Samples.

No Quality Control Sample Frequency Outliers exist.

Appendix F

QA/QC Assessment

APPENDIX F

DATA QUALITY OBJECTIVES

To ensure that reliable data of adequate type was collected and assessed for the investigation, the seven-step Data Quality Objective (DQO) approach, endorsed in the NSW DEC (2006) Guidelines for the NSW Site Auditor Scheme 2nd Edition, will be adopted. The DQOs set quality assurance and quality control parameters for the field and laboratory programs to ensure data of appropriate reliability will be used to assess the environmental conditions at Parcel 12.

ENVIRON has developed DQOs in accordance with the seven-step process, which is presented below.

Step 1 - State the Problem

Based on the information available from the Phase 1 ESA, uses of Parcel 12 include an unknown development in the 1950s and rural residential landuse from the 1970s to the present day. These uses of Parcel 12 require confirmation via a site walkover and judgemental sampling. In addition, the potential for fluoride in surface soils from dust deposition from the Hydro smelter requires assessment.

Step 2 - Identification of the Goals (Decisions) of the Study

The following decisions are to be made from this study:

- Are the current and former uses of Parcel 12 consistent with site observations?
- Has Parcel 12 been impacted by fluoride from dust deposition from the Hydro smelter?
- Has Parcel 12 been impacted by other contaminants from historical site use?
- Is Parcel 12 suitable for low rural residential (R2) and rural landscape (RU2) landuse?

Step 3 – Identify Information Inputs to the Decision or Goal of the Study

The inputs required to make the above decisions as listed below:

- A site walkover, including collection of field notes and photographs;
- Results of surface soil samples collected for fluoride analysis;
- Results of other soil samples from fill/ hummocky ground collected for suitable analysis during the site walkover;
- Proposed land use;
- Appropriate NSW contamination guidelines.

Step 4 – Define the Study Boundaries

Spatial boundaries - the study boundaries have been defined as the spatial boundary of Parcel 12, as shown on Figure 1.

Vertical boundaries – as areas of concern at Parcel 12 are restricted to surface soils, the vertical boundary of the study is the top 200mm unless subsurface contamination issues are identified during the site walkover.

Temporal boundaries – the temporal boundary is limited to the data collected during the investigation works.

Constraints within the study boundaries – This investigation does not require investigation of subsurface soils or groundwater unless impacts to subsurface soils or groundwater are considered likely to have occurred from the historical site activities.

Step 5 - Develop a Decision Rule

The decision rules for this investigation are as follows:

- If it is determined that the data generated through this investigation is reliable for use in producing a site conceptual model and assessing the suitability of Parcel 12 for low rural residential (R2) and rural landscape (RU2) landuse, then an assessment of the suitability of Parcel 12 for low rural residential (R2) and rural landscape (RU2) landuse will be made;
- If it is determined that the data generated through this investigation is not suitable, comprehensive or reliable for use in producing a site conceptual model, then further investigations may be recommended prior to the development of a site conceptual model and assessment of the suitability of Parcel 12 for low rural residential (R2) and rural landscape (RU2) landuse.

Step 6 – Specify Performance or Acceptance Criteria that the Data need to Achieve

Acceptable limits on decision errors have been developed based on the Data Quality Indicators (DQIs) of precision, accuracy, representativeness, comparability and completeness. The DQIs for this investigation are outlined below.

The potential for significant decision errors were minimized by:

- Completion of a QA/QC assessment of the investigation data to assess if the data satisfies the DQIs;
- Assessment of whether appropriate sampling and analytical densities were completed for the purpose of the investigation; and
- Ensuring that the criteria set for the investigation were appropriate for the proposed use of Parcel 12.

Minimization of the potential for significant decision errors limits the potential that a conclusive statement may be incorrect.

Step 7 - Optimisation of the Design of Collection of Data

The collection of data was optimized by the completion of a Phase 1 ESA, data gap review and development of a sampling strategy. Attainment of the DQOs has been assessed by reference to the DQIs, presented below.

DATA QUALITY INDICATORS

The project Data Quality Indicators (DQIs) have been established to set acceptance limits on field and laboratory data collected as part of this investigation. Field and laboratory procedures acceptance limits are set at different levels for different projects and by different laboratories. Non-compliances with acceptance limits are to be documented and discussed in the report. The DQIs are presented in Table A.

Table A:	Data Quality Indicators		
DQI	Field	Laboratory	Acceptability Limits
	All critical locations sampled,	All critical samples analysed and all	As per NEPM (2013)
	including targeted sampling of	analytes analysed according to	
	areas of environmental concern	Standard Operating Procedures	
	identified during the site walkover.	(SOPs)	
	Fluoride soil sampling completed	Appropriate Practical Quantitation	
SS	on a reduced density to identify if	Limits (PQLs)	
Ü	fluoride in surface soils is an	Sample documentation complete	
ete	issue.	Sample holding times complied	
jdu	All samples collected	with	
Completeness	Experienced sampler		
	Documentation correct		
	Experienced sampler	Same analytical methods used	As per NEPM (2013)
≥	In the event of multiple sampling	Same PQLs	
illiq	events:	Same units	
ara	Same types of samples collected	Same primary and secondary	
μĎ	Same sampling methodologies	laboratories	
Comparability	used		
	Climatic conditions	All complex analysed according to	
se	Appropriate media sampled	All samples analysed according to SOPs	
Represe ntativene ss	Relevant media sampled	SOFS	
Re nta ss			
	Collection of duplicate samples	Analysis of:	
	Sampling methodologies	Blind duplicate samples at rate of 1	RPD of 30 to 50%
uo	appropriate and complied with	in 10 samples	
Sisi		Split duplicate samples at rate of 1	RPD of 30 to 50%
Precision		in 20 samples	
Щ		Laboratory duplicate samples	RPD of 30 to 50%

	Sampling methodologies	Analysis of:		
	appropriate and complied with.	Method blanks	Non-detect	
		Matrix spikes	70 to 130%	
ठे		Surrogate spikes	70-130%	
ıra (Laboratory control samples	70 to 130%	
วว		Reagent blanks		
⋖		Reference material		

QUALITY ASSURANCE AND QUALITY CONTROL

A quality assurance assessment for this report is presented in Table A and B below. An assessment was made of data completeness, comparability, representativeness, precision and accuracy based on field and laboratory considerations, as outlined in NSW DEC (2006) and NSW EPA (2007) guidelines.

Sampling Methodology	ENVIRON Assessment
Sampling Pattern and Locations	Surface soil sampling was undertaken on a grid pattern across the site to assess the impact of particulate fallout from Hydro Aluminium Smelter.
	Sampling of fill material was completed on a targeted basis.
Sampling Density	Three soil samples were collected from a grid across the entire site which is approximately 4.3 ha. The purpose of the sampling was to assess for impacts from smelter particulate fallout and therefore is considered suitable in density and spatial layout.
	Five representative soil samples were collected from test pits that encountered fill. Given the homogeneous nature of the fill and its limited vertical distribution, this sampling density is considered adequate.
Sample depths	Surface soil samples were collected from a grid across the entire site from the ground surface.
	Fill soil samples were collected from within 0.6m of the ground surface, which constitutes the maximum depth of fill.
Sample Collection Method	Surface soil samples across Parcel 12 were collected directly from the ground surface using using dedicated disposable gloves and a hand trowel. The hand trowel was brushed clean prior to sample collection.
	Fill soil samples were collected from the centre of the back hoe bucket using dedicated disposable gloves.
	Soil samples were collected into laboratory supplied, acid rinsed glass jars.
Decontamination Procedures	Surface soil samples across Parcel 12 were collected directly from the ground surface using using dedicated disposable gloves and a hand trowel. The hand trowel was generally used to loosen the soil prior to sampling and was brushed clean between sample locations.

Table A: QA/QC – Sampling and Analysis Methodology Assessment			
Sampling Methodology	ENVIRON Assessment		
	hoe bucket, decontamination of the back hoe was not required.		
Sample handling and containers	All soil samples were placed into laboratory-supplied acid- rinsed glass jars and paper bags for fluoride analysis. Soil samples were placed on ice following collection and during transportation to the laboratory.		
Chain of Custody	Samples were transported to the laboratory under chain of custody conditions. The chain of custody forms were signed by the laboratory on receipt of the samples.		
Detailed description of field screening for volatiles was not completed during so sampling as volatile contaminants were not the main che of concern.			
Calibration of field equipment	Field equipment requiring calibration was hired from a rental company who calibrated the equipment prior to hire.		
Sampling Logs	The lithology of surface soil samples was documented on the field information sheets, which are included in Appendix D.		

Table B: QA/QC – Field and Lab Quality Assurance and Quality Control			
Field and Lab QA/QC	ENVIRON Comments		
Field quality control samples	One intra-laboratory duplicate soil sample was collected at Parcel 12 during the fill soil sampling, with duplicates collected at a rate of one per 5 primary samples. No rinsate blank samples were collected.		
Field quality control results	The Relative Percent Differences (RPDs) between the primary and duplicate pair were less than 50% for all analytes.		
NATA registered laboratory and NATA endorsed methods	ALS was used as the primary laboratory. ALS laboratory certificates are NATA stamped and the lab is accredited for the analyses performed for this assessment.		
Analytical methods	A summary of analytical methods were included in the laboratory test certificates.		
Holding times	Review of the COCs and laboratory certificates indicate that holding times were met.		
Practical Quantitation Limits (PQLs)	PQLs for all soil analytes were below Parcel 12 assessment criteria.		
Laboratory quality control samples	Laboratory quality control samples including duplicates, laboratory control samples, matrix spikes, surrogate spikes and blanks were undertaken by the laboratories at appropriate frequencies.		
Laboratory quality control results	All results for laboratory soil duplicates, laboratory control samples, matrix spikes and surrogates were acceptable and no detections were made in blank samples.		

Overall it is considered that the completed investigation works and the data obtained adequately complied with the requirements of NSW DEC (2006) and NSW EPA (2007) guidelines and that the data is of suitable quality to meet the project objectives.

Appendix G

Hazardous Materials Assessment

Hazardous Materials Audit Parcel 12

Prepared for: Hydro Aluminium Kurri Kurri Pty Limited

Prepared by: **ENVIRON Australia Pty Ltd**

Date: August 2014

Project Number: AS130348

Prepared by: **Authorised by:** Name: Shaun Taylor Name: Fiona Robinson Title: Senior Environmental Scientist Title: Manager, ENVIRON Hunter Phone: 02 4962 5444 Phone: 02 4962 5444 Email: Email: staylor@environcorp.com frobinson@environcorp.com Souson Signature: 15/8/14 Signature: Date: 15/8/14 Date:

This document is issued in confidence to Hydro Aluminium Kurri Kurri Pty Limited for the described in Section 1.1 of this report. It should not be used for any other purpose.

The report must not be reproduced in whole or in part except with the prior consent of ENVIRON Australia Pty Ltd and subject to inclusion of an acknowledgement of the source. No information as to the contents or subject matter of this document or any part thereof may be communicated in any manner to any third party without the prior consent of ENVIRON Australia Pty Ltd.

Whilst reasonable attempts have been made to ensure that the contents of this report are accurate and complete at the time of writing, ENVIRON Australia Pty Ltd disclaims any responsibility for loss or damage that may be occasioned directly or indirectly through the use of, or reliance on, the contents of this report.

© ENVIRON Australia Pty Ltd

VERSION CONTROL RECORD

Document File	Date Issued	Version	Author	Reviewer
Name				
Hydro Parcel 12 Draft	15 August 2014	Draft 1	S Taylor	F Robinson
Hazardous Materials Audit				

Contents

		Page
1	Introduction	1
1.1	Objectives and Scope of Work	1
1.2	Legislative Requirements, Standards and Codes of Practice	1
1.3	Survey Methodology	1
1.4	Survey Limitations	2
2	Surveys Details	3
2.1	Buildings Descriptions	3
2.2	Survey Methodology	3
2.3	Sample Collection and Laboratory Analysis	4
3	Findings	7
3.1	Hazardous Materials Register	7
3.2	Asbestos Containing Materials	7
3.3	Synthetic Mineral Fibre Materials	7
3.4	Polychlorinated Biphenyls	7
3.5	Lead Based Paint	7
3.6	Other Observations	7
4	Recommendations	8
4.1	Asbestos Containing Materials	8
4.1.1	Building Maintenance/ Retention	8
4.1.2	Building Demolition	8
4.2	Synthetic Mineral Fibre Materials	9
4.3	Polychlorinated Biphenyls	9
4.4	Lead Based Paint	9
5	References	10
6	Limitations	11
6.1	General Limitations regarding Sampling	11
6.2	User Reliance	11

List of Figures

Figure 1: Part of Parcel 12

List of Appendices

Appendix A: Photographs

Appendix B: Hazardous Materials Register

Appendix C: Laboratory Certificates

Acronyms and Abbreviations

ACM: Asbestos containing material

EMP: Employment Parcel

LBP: Lead based paint

PCB: Polychlorinated biphenyl compounds

SMF: Synthetic mineral fibre

1 Introduction

ENVIRON Australia Pty Ltd (ENVIRON) was engaged by Hydro Aluminium Kurri Kurri Pty Ltd (Hydro) to undertake a hazardous materials audit of the buildings located within Parcel 12, within the buffer zone of the former Hydro Aluminium smelter at Kurri Kurri, NSW.

1.1 Objectives and Scope of Work

The survey was undertaken in order for Hydro Aluminium to effectively manage its compliance obligations with respect to asbestos containing materials (ACM), and to identify and manage risks associated with other hazardous materials potentially present in the buildings to an acceptable level.

Hazardous materials other than ACM were polychlorinated biphenyl compounds (PCB), synthetic mineral fibre (SMF), and lead based paint (LBP).

1.2 Legislative Requirements, Standards and Codes of Practice

In NSW, management of asbestos is governed by the following principal legislation and guidance documents:

- Workplace Health and Safety Regulation 2011 (Part 8)
- Code of Practice for the Management and Control of Asbestos in Workplace (NOHSC, 2005a).
- NOHSC Code of Practice for the Safe Removal of Asbestos 2nd Edition (NOHSC, 2005b).

The following codes of practice and standards apply to the other hazardous materials:

- National Code of Practice for the Safe Use of Synthetic Mineral Fibres (NOHSC, 1990).
- Identification Of PCB-Containing Capacitors (ANZECC, 1997).
- Australian Standard AS4361.2 Guide to Lead Paint Management Residential and Commercial Buildings.

1.3 Survey Methodology

The hazardous materials survey was undertaken of structures within EMP 2.

The survey methodology involved the following:

- An inspection of the accessible sections of the outside and inside of all buildings, as well as any accessible power boxes on power poles within the properties.
- Wherever possible, confirmation of the presence or absence of asbestos in a material was via identification in the field.
- Where the presence or absence of asbestos could not be determined in the field, a sample was taken for laboratory analysis.
- The age of the building and the fluorescent light fittings were estimated, and those that
 potentially include capacitors that contain PCBs (as discussed in *Identification Of PCB-Containing Capacitors* (ANZECC, 1997)) were noted.
- Visual confirmation of SMF.

 The age of the building and the condition of the paint was observed and the likelihood of lead-based paint being present noted.

1.4 Survey Limitations

Any restrictions or limitations on the survey, such as access not gained to areas or areas not accessible due to safety restrictions, are outlined in Section 2.2 of this report. The reader is also referred to ENIVRON's limitations in Appendix Section 6.

2 Surveys Details

2.1 Buildings Descriptions

The hazardous materials survey was undertaken on 20 May 2014 by ENVIRON Senior Environmental Scientist Shaun Taylor.

Table 1 describes the following:

- The building type (such as residential home, shed, garage).
- Main construction materials used in construction of the building.
- An estimate as to whether the structure was built prior to 1990 (1990 is commonly regarded as a 'cut-off date' for asbestos in construction materials. It is also a good indicator as to the likelihood of PCBs being used in fluorescent lighting capacitors).
- Any areas not accessible within the building.

A total of 15 buildings within four properties were inspected for hazardous materials.

2.2 Survey Methodology

The methodology undertaken for the survey is described as follows.

Develop Project OHS Plan, and Survey Protocol and Survey Templates

A Health and Safety Plan was developed for the contamination and hazardous materials investigations within the buffer zone in advance of the works commencing and endorsed internally.

A hazardous materials protocol and data collection template specific to the project was developed, to ensure a consistent approach to the surveys and data collection.

Project Scheduling and Communications

Tenants' contact details were provided by Hydro and a scheduled date for the survey agreed to between ENVIRON and the tenant. Each tenant was notified of the survey program and process by Hydro (via the real estate agent) in advance. Prior to the scheduled date, ENVIRON contacted the tenant to confirm the date, arrival time, and any likely access issues or restricted areas.

Conduct Hazardous Materials Survey

The survey included a thorough visual inspection of all accessible areas of the buildings and structures, and collection of representative samples for the purpose of analytical confirmation where materials could not be visually identified.

As the houses were inhabited by tenants, some areas (such as the ceiling cavity) were inaccessible due to the location of furniture and appliances. For this reason sampling of some material was also not appropriate as it would require disturbance of material that was not damaged.

Data Collection

Survey data collected included the type, form, location, extent/ quantity, condition and accessibility of ACM and synthetic mineral fibre products, the likely presence of PCB in fluorescent light fittings, and the likely presence of LBP. Photographs were also taken of the observed potential/ confirmed hazardous materials.

In addition, any other observations of concern (such as potential for contamination in the surrounding area) were documented.

Sample Analysis

Any asbestos sample analysis was undertaken using polarised light microscopy, in conjunction with dispersion staining techniques. Where possible, the presence of asbestos (but not the type of asbestos) was confirmed in the field.

SMF and PCB were visually identified during the surveys. The presence of lead in paint was assumed based on the likely age of the building and the condition of painted surfaces.

Areas not Accessed

During the audit, all areas of the buildings and structures within the area which were both readily accessible and safe to access were inspected. Where access was not available to areas which could potentially hazardous materials, the locations and the reasons inaccessibility were noted. Any areas not accessed are documented within Section 2 of this report.

Other Observations

In addition to the survey of structures within the property, the surveyor also noted potential issues of concern, such as:

- Evidence of subsurface hazardous materials (such as ACM service conduits).
- Evidence of hazardous material fragments/ waste in soils or elsewhere within the property.
- Other potential issues of concern (such as possible soil contamination).

2.3 Sample Collection and Laboratory Analysis

During the survey one sample was collected and analysed for the presence of asbestos (all forms) at a NATA accredited asbestos identification facility. The results of the analysis is summarised in Section 3, with the supporting laboratory analytical certificate contained in Appendix C.

The remaining ACM were confirmed through visual confirmation of the presence of asbestos (but not the type of asbestos) in the field.

Table 1: Hazardous Materials Audit Building Details				
Property	Building Type/s	Main Construction Materials	Estimated Pre or Post 1990 construction	Any Inaccessible Areas
		Parcel 12		
1 McLeod Road	House	Cement sheeting Timber Brick Concrete Corrugated iron	Pre-1990	Roof and wall cavities
	Garage	Cement sheeting (hardiplank) Timber Corrugated iron Concrete	Pre-1990	N/A
	Unit 1A (separate accommodation to house)	Cement sheeting Timber Brick Concrete Corrugated iron	Pre-1990	Roof and wall cavities
	Shed	Corrugated iron Metal	Pre-1990	Interior
3 McLeod Road	House	Cement sheeting Timber Brick Concrete Corrugated iron Masonite	Pre-1990	Roof and wall cavities
	Small shed	Corrugated iron Metal Cement sheeting Timber	Post-1990 (tenant advised 2000)	
	Large shed	Corrugated iron Metal	Post-1990 (tenant advised 2002)	

Table 1: Hazardous Materials Audit Building Details				
Property	Building Type/s	Main Construction Materials	Estimated Pre or Post 1990 construction	Any Inaccessible Areas
		Timber		
5 McLeod Road	Main House	Cement sheeting Timber Brick Concrete Corrugated iron Masonite	Pre-1990	Roof and wall cavities
	Brick Section	Cement sheeting Timber Brick Concrete Corrugated iron	Pre-1990	Roof and wall cavities
	Garage	Cement sheeting Timber Concrete Corrugated iron Masonite	Post-1990	
	Sheds (for animals)	Corrugated iron	Various	Inside sheds (within stocked areas)

3 Findings

3.1 Hazardous Materials Register

The results of the survey are presented in Appendix B.

The following provides a summary of the hazardous materials identified. Representative photographs of the identified hazardous materials are provided in Appendix A.

3.2 Asbestos Containing Materials

Asbestos cement sheeting was found in the following locations:

- 1 McLeod Road: at various locations to the exterior and interior of the house, garage and separate unit.
- 3 McLeod Road: at various locations to the exterior of the house.
- 5 McLeod Road: at various locations to the exterior and interior of the house.

Three samples were collected (the exterior wall of the garage at 1 McLeod Road, infill panels used to the outdoor area at the back of the garage at 5 McLeod Road, and the infill panels used for the former garage to the brick section a 5 McLeod Road) for laboratory analysis. The results confirmed asbestos was present only in the infill panels to the outdoor area at 5 McLeod Road. The laboratory certificates are presented in Appendix C.

3.3 Synthetic Mineral Fibre Materials

No SMF were observed. However, the wall and roof cavities of most buildings could not be accessed, and there is potential that SMF was used as insulation in such spaces.

3.4 Polychlorinated Biphenyls

There is potential that some of the fluorescent light fittings used may also have capacitors containing PCBs.

3.5 Lead Based Paint

Due to the expected age of most structures lead based paint is potentially present. The majority of lead based paint, however, is likely to be painted onto ACM used on the exterior of the buildings.

AS4361.2 Guide to Lead Paint Management – Residential and Commercial Buildings notes that lead based paint was used mainly on exterior surfaces and to a lesser extent on interior doors and architraves, especially in undercoats and primers where concentrations of up to 20% lead were commonly used. It also notes that while paints produced for Australian dwellings from the 1970s onwards (and therefore applicable for this property) contain less than 1% lead, it is possible that industrial paints, having higher concentrations of lead, may have been applied to housing and commercial buildings.

3.6 Other Observations

In addition to the hazardous materials observed in the buildings within the parcel, the following potential issues of concern were also identified:

There appeared to be a number of rabbit burrows near the sheds at 3 McLeod Road.

4 Recommendations

The following are general management measures to be implemented for hazardous materials management, either in the event that the building is to be retained and occupied, or the building is to be demolished.

4.1 Asbestos Containing Materials

4.1.1 Building Maintenance/ Retention

- The asbestos containing materials identified on site generally do not pose a significant health risk and may remain in situ if they remain undamaged and sealed (by paint).
- Damaged ACM should be removed and replace. Where damage is minor (such as minor cracks, drilled holes or worn edges to sections of the walls and ceilings within the occupied houses) any minor cracks should be sealed with PVA glue and painted (no sanding of materials prior to painting) as a temporary measure. However it is recommended that a program for removal of these materials also be developed and implemented.
- A copy of the asbestos and hazardous materials register is to be kept at the Hydro Aluminium Smelter and made available to employees or contractors undertaking work on the buildings.
- No sanding, blasting, drilling, or similar abrasive activity is to be undertaken on any identified ACMs.
- The National Code of Practice for the Management and Control of Asbestos in Workplaces recommends, and the Work Health and Safety Regulation 2011 requires, labelling of any identified ACM in the workplace where practicable.
 - While such labelling is not required in a rental property under the regulation (and notification of tenants on the presence of asbestos is not required by the NSW Department of Fair Trading), Hydro should consider labelling the ACM, or advising tenants of the presence of ACM, particularly those in locations where it is easily accessible and more likely to be damaged or impacted (such as the walls).
 - Where asbestos (zelemite) has been identified in the power box of an occupied house these should be labelled as containing asbestos for the information of electricity supply company personnel accessing the box.
- If installed, periodically reinspect asbestos warning labels to ensure they are legible and in good condition.
- In the event that any of the ACM is damaged while the building is still occupied by tenants, the material should be immediately removed.

4.1.2 Building Demolition

- If necessary due to demolition or refurbishment works, remove identified ACMs under controlled conditions using an appropriately licensed removal contractor.
- Any asbestos work is carried out in accordance with the Code of Practice for the Management and Control of Asbestos in the Workplace [NOHSC: 2018 (2005)].

• Ensure appropriately licenced removalists are used for any planned removal, and that any removal works are undertaken in accordance with the NOHSC Code of Practice for the Safe Removal of Asbestos 2nd Edition [NOHSC:2002(2005)].

4.2 Synthetic Mineral Fibre Materials

- Apply caution when entering ceiling voids and ensure contractors or persons entering ceiling voids or performing work on synthetic mineral fibre materials wear appropriate PPE, particularly if they have breathing disorders such as asthma.
- Remove any SMF debris as part of routine site housekeeping.
- Ensure contractors or persons performing work on SMF materials adhere to the guidelines outlined in the National Code of Practice for Synthetic Mineral Fibres [NOHSC 1004 (1990)], May 1990; and the Industry code of Practice for the Safe Use of Glass Wool and Rock Wool Insulation Products, April, 2003.

4.3 Polychlorinated Biphenyls

- Undamaged capacitors (containing PCBs) are unlikely to pose a health risk. Therefore they are unlikely to pose a risk if they remain in-situ.
- In the event that the light fittings are to be removed, and it is confirmed that the
 capacitors contain PCBs, the requirements of the *Identification Of PCB-Containing*Capacitors should be implemented for removal, temporary storage, transportation and
 disposal.

4.4 Lead Based Paint

- The vast majority of the exterior paints (which could potentially be LBP) were applied to ACM. Therefore:
 - In the event that the building is to be demolished, these materials would be managed in accordance with **Section 4.1.2** as asbestos containing materials. These management procedures are considered appropriate for LBP.
 - If the building is to be retained and surfaces repainted, no abrasion (mechanical or manual) should be applied to these surfaces. This is required to avoid both the generation of airborne asbestos fibres and potentially lead bearing particles.
- Abrasion should not be used on any of the remaining paint on non-asbestos containing material surfaces to avoid the potential generation of lead bearing particles without previously testing to confirm that LBP are absent.
- In the event that the building is demolished, the PPE to be worn when managing ACM and SMF would appropriately protect demolition personnel from LBP.

5 References

- Australian and New Zealand Council Environment Conservation Council (ANZECC). 1997. "Identification Of PCB-Containing Capacitors".
- National Occupational Health and Safety Council. (NOHSC). 1990. "National Code of Practice for the Safe Use of Synthetic Mineral Fibres".
- National Occupational Health and Safety Council. (NOHSC). 2005a. "Code of Practice for the Management and Control of Asbestos in Workplace.
- National Occupational Health and Safety Council. (NOHSC). 2005b. "Code of Practice for the Safe Removal of Asbestos 2nd Edition".
- Standards Australia. 1998. "AS4361.2 Guide to Lead Paint Management Residential and Commercial Buildings"

6 Limitations

ENVIRON Australia prepared this report in accordance with the scope of work as outlined in our proposal to Hydro Aluminium Kurri Kurri Pty Limited dated 18 September 2013 and in accordance with our understanding and interpretation of current regulatory standards.

A representative program of sampling and laboratory analyses was undertaken as part of this investigation, based on past and present known uses of the site. While every care has been taken, concentrations of contaminants measured may not be representative of conditions between the locations sampled and investigated. We cannot therefore preclude the presence of materials that may be hazardous.

Site conditions may change over time. This report is based on conditions encountered at the site at the time of the report and ENVIRON disclaims responsibility for any changes that may have occurred after this time.

The conclusions presented in this report represent ENVIRON's professional judgement based on information made available during the course of this assignment and are true and correct to the best of ENVIRON's knowledge as at the date of the assessment.

This report does not purport to give legal advice. This advice can only be given by qualified legal advisors.

6.1 General Limitations regarding Sampling

It is not always possible to locate all hazardous materials in the course of an inspection, due to factors such as:

- Restrictions on access to internal construction components and other inaccessible parts of structures.
- Restrictions to access due to presence of tenant's belongings.
- The need to avoid damage in occupied buildings, such as when attempting to inspect behind wall panels or under carpets.
- Minimising inconvenience when premises are occupied or are in use whilst an inspection is being conducted.
- The availability of building/plant construction plans.

6.2 User Reliance

This report has been prepared exclusively for Hydro Aluminium Kurri Kurri Pty Ltd and may not be relied upon by any other person or entity without ENVIRON's express written permission.

Figures

Figure 1. Part of Parcel 12

Appendix A

Photographs

Photo 1: Section of the ACM sheeting exterior walls (including corner moulding) at 1 McLeod Road

Photo 2: Section of the ACM sheeting eaves at 1 McLeod Road

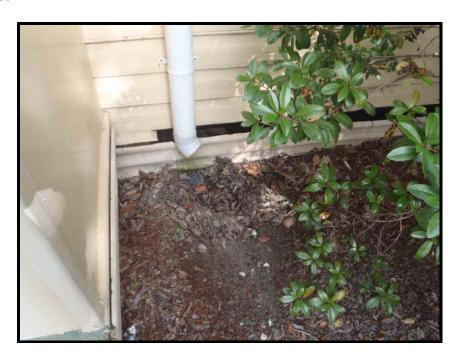


Photo 3: Section of the ACM corrugated sheeting used between the garden bed and under the house and Unit 1A at 1 McLeod Road.

Photo 4: ACM sheeting used in the walls and ceiling to the main bedroom at 1McLeod Road.

Photo 5: ACM sheeting used in the walls and ceiling to the children's bedroom at 1McLeod Road.

Photo 6: ACM sheeting used in the walls to the laundry at 1 McLeod Road

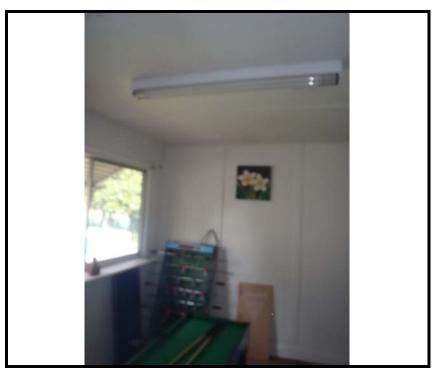


Photo 7: ACM sheeting used in the walls and ceiling to the games room; fluorescent light that potentially contains PCB also shown (at 1 McLeod Road)

Photo 8: ACM sheeting used in the walls and ceiling to the bathroom, including the patterned section to the lower 1.8m, at 1 McLeod Road.

Photo 9: Some of the ACM sheeting used to the side and above the back door at 1 McLeod Road.

Photo 10: One of the side panels constructed of ACM sheeting to the side of the back door awning at 1 McLeod Road.

Photo 11: Wallpapered ACM sheeting walls in living room of 1 McLeod Road.

Photo 12: Panels to exterior walls of the garage at 1 McLeod Road. Laboratory analysis concluded these are not ACM.

Photo 13: ACM sheeting exterior wall panels to Unit 1A at 1 McLeod Road.

Photo 14: One of the two ACM zelemite backing boards in power boxes attached to Unit 1A at 1 McLeod Road.

Photo 15: ACM sheeting to the walls and ceiling, and potentially PCB-containing fluorescent light in the bathroom area of Unit 1A at 1 McLeod Road.

Photo 16: ACM sheeting to the walls and ceiling of the entry room of Unit 1A at 1 McLeod Road.

Photo 17: ACM sheeting attached to timber frame used for front door to Unit 1A at 1 McLeod Road.

Photo 18: One of the potentially PCB-containing fluorescent light in the general area of Unit 1A at 1 McLeod Road.

Photo 19: ACM sheeting used in gable end , eaves and exterior wall panelling to 3 McLeod Avenue.

Photo 20: ACM sheeting used in exterior wall panelling to 3 McLeod Avenue.

Photo 21: Potentially PCB-containing fluorescent lights used in the large shed at 3 McLeod Road.

Photo 22: Example of the vinyl veneer used on the gable end and exterior walls to the main house at 5 McLeod Avenue. The veneer appears to cover ACM sheeting. The photo also shows ACM sheeting used for the eaves.

Photo 23: ACM sheeting (including lower section with pattern print) in walls to bathroom section of front room of 5 McLeod Road.

Photo 24: Example of ACM sheeting in walls to the main bedroom at 5 McLeod Road.

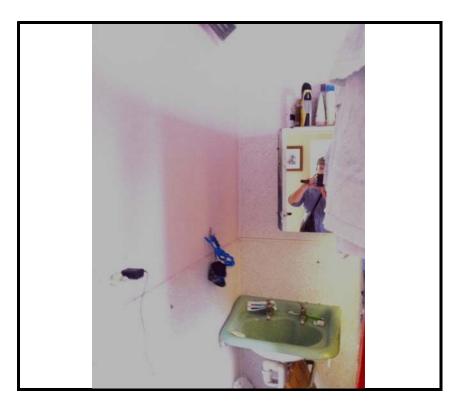


Photo 25: ACM sheeting used in pattern sections of walls to the bathroom at 5 McLeod Road.

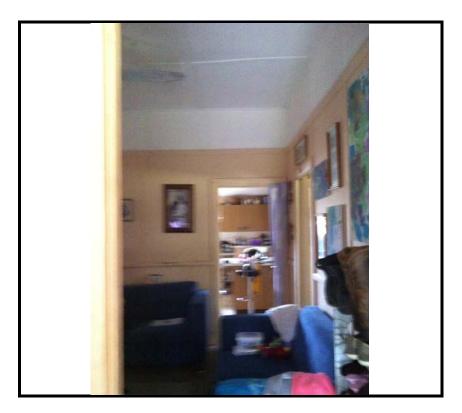


Photo 26: ACM sheeting used in walls and the ceiling of the living room at 5 McLeod Road.

Photo 27: Example of the ACM sheeting in the ceiling and the potentially PCB-containing fluorescent lights used in the brick section of 5 McLeod Road.

Photo 28: ACM sheeting (including behind corrugated iron) used to the side of the outdoor area at the rear of garage at 5 McLeod Road.

Photo 29: Example of the ACM sheeting used to the eaves and the undercover area at the rear to the brick section of 5 McLeod Road.

Photo 30: ACM sheeting (patterned) to walls and to the ceiling in the shower area of the brick section of 5 McLeod Road. ACM sheeting also used in the ceiling of the adjoining toilet room.

Photo 31: panels used as infill to a former garage entry to the brick section of 5 McLeod Road. Laboratory analysis concluded these are not ACM.

Photo 32: ACM zelemite back board to power box attached to the brick section of 5 McLeod Road.

Appendix B

Hazardous Materials Register

Date of Audit	Sector/ Area	D	Building Name/ No.	Type of Haz Mat	Form of Haz Mat	Location	Description/ Condition	Accessibility	Est. Quantity	Photo Ref	Sample No.	Result
Date of Audit	Sector/ Area	Property Address	building Name/ No.	iviat	Form of Haz Wat	Location	Description/ Condition	Accessibility	est. Quantity	Photo Rei	sample No.	Result
20/05/2014	Parcel 12	1 McLeod Road	House	ACM	Sheeting	Exterior walls to front and eastern sides (main house is weatherboard), including corner moulding	Fair, painted (some peeling) and minor damage	Ground level - 3m	200m2	1	Field	ACM
20/05/2014	Parcel 12	1 McLeod Road	House	ACM	Sheeting	Eaves to all sides (both extension and weatherboard section)	Fair - good, painted	3m - 5m above ground level	60m2	2	Assumed	ACM
						Used as edge between garden bed and under house along front and west side of house, and east wall of						
20/05/2014		1 McLeod Road	House	ACM	Corrugated sheeting	Unit 1A	Poor	Ground level	15m2	3	Field	ACM
20/05/2014		1 McLeod Road	House	ACM	Sheeting	Walls and ceiling to main/ front bedroom	Good, painted and no damage	Ground level - 3m	70m2	4	Assumed	ACM
20/05/2014		1 McLeod Road	House	ACM	Sheeting	Walls and ceiling to kid's bedroom	Good, painted and no damage	Ground level - 3m	50m2	5	Assumed	ACM
20/05/2014		1 McLeod Road	House	ACM	Sheeting	Walls to laundry	Fair, painted bu minor damage	Ground level - 2.4m	20m2	6	Field	ACM
20/05/2014		1 McLeod Road	House	ACM	Sheeting	Walls and ceiling to Games Room	Good, painted and no damage	Ground level - 2.4m	40m2	7	Assumed	ACM
20/05/2014	Parcel 12	1 McLeod Road	House	PCB	PCB	Ceiling to Games Room	Good	2.4m above ground level	1	7	Assumed	PCB
20/05/2014	Parcel 12	1 McLeod Road	House	ACM	Sheeting	Walls and ceiling to bathroom	Painted above 1.8m, below is the patterned print sheeting	Ground level - 3m	30m2	8	Assumed	ACM
20/05/2014	Parcel 12	1 McLeod Road	House	ACM	Sheeting	Panels to the sides and above the back door	Fair, painted and minor damage	Ground level - 2.2m	10m2	9	Field	ACM
20/05/2014	Parcel 12	1 McLeod Road	House	ACM	Sheeting	Side panels to back door landing awning	Good, painted (outer side)	2m above ground level	2m2	10	Field	ACM
20/05/2014	Parcel 17	1 McLeod Road	House	ACM	Sheeting	Walls and ceiling to dining area (excluding fire place	Good, painted or wallpapered	Ground level - 2.4m	70m2	N/A	Assumed	ACM
20/05/2014		1 McLeod Road	House	ACM	Sheeting	Walls to living room	Good, painted or wallpapered Good, painted or wallpapered	Ground level - 2.4m	70m2 60m2	11	Assumed	ACM
20/05/2014		1 McLeod Road 1 McLeod Road	Garage	N/A	Sheeting Sheet (Hardiplank)	Walls to living room Exterior walls to garage	Good, painted or wallpapered Fair, painted with some minor damage	Ground level - 2.4m	150m2	11	LP12-ACM-01	NAD
20/05/2014	Parcei 12	1 MCLEOD ROAD	Garage	N/A	sneet (nardiplank)		Fair - painted but peeling, some damage including corner	Ground level - 2.4m	150m2	12	LP12-ACM-01	NAD
20/05/2014	Parcel 12	1 McLeod Road	Unit 1A	ACM	Sheeting	Exterior walls to Unit 1A	moulding	Ground level - 3m	150m2	13	Field	ACM
20/05/2014	Parcel 12	1 McLeod Road	Unit 1A	ACM	Zelemite	2 xpower boxes near front door to Unit 1A	Drilled holes	1.6m above ground level	2m2	14	Field	ACM
20/05/2014	Parcel 12	1 McLeod Road	Unit 1A	ACM	Sheeting	Walls and ceiling to bathroom area	Good, painted	Ground level - 2m	30m2	15	Assumed	ACM
20/05/2014	Parcel 12	1 McLeod Road	Unit 1A	PCB	PCB	Fluorescent light in bathroom area	Good	2m above ground level	1	15	Assumed	PCB
20/05/2014	Parcel 12	1 McLeod Road	Unit 1A	ACM	Sheeting	Walls and ceiling to entrance room	Good, painted	Ground level - 2.4m	25m2	16	Field	ACM
20/05/2014	Parcel 12	1 McLeod Road	Unit 1A	ACM	Sheeting	Front panel to the front door (attached to timber frame)	Good, painted	Ground level - 2m	4m2	17	Assumed	ACM
20/05/2014	Parcel 12	1 McLeod Road	Unit 1A	PCB	PCB	Fluorescent light in main living area	Good	2m above ground level	1	18	Assumed	PCB
20/05/2014	Parcel 12	3 McLeod Road	House	ACM	Sheeting (Hardiplank)	Exterior walls to the house	Fair, painted but some damage	At ground level - 3,5m	180m2	19 and 20	Field	ACM
20/05/2014	Parcel 12	3 McLeod Road	House	ACM	Sheeting	Gable end to front of house	Good, painted	3m - 5m above ground level	10m2	19	Assumed	ACM
20/05/2014	Parcel 12	3 McLeod Road	House	ACM	Sheeting	Eaves to house	Good, painted	3m - 5m above ground level	10m2	19	Assumed	ACM
20/05/2014	Parcel 12	3 McLeod Road	Large shed	PCB	PCB	Fluorescent lights - shed is built 2002 but lights appear old	Good	3.5m above ground level	6	21	Assumed	PCB
20/05/2014	Parcel 12	5 McLeod Road	Main House	ACM	Sheeting	Eaves to all sides	Good, painted	2.4m above ground level	30m2	22	Assumed	ACM
20/05/2014	Parcel 12	5 McLeod Road	Main House	ACM	Sheeting	Gable ends under corrugated vinyl veneer	Unknown - protected by veneer	4 - 10m above ground level	80m2	22	Assumed	ACM
						Exterior walls to main house beneath veneer panels (assumed it is on all walls, section of ACM found and						
20/05/2014	Parcel 12	5 McLeod Road	Main House	ACM	Sheeting	field confirmed)	Unknown - protected by veneer	Ground level - 3m	300m2	22	Field	ACM
20/05/2014	Parcel 17	5 McLeod Road	Main House	ACM	Sheeting	Ceiling and walls to front room (with sink)	Good - bottom section of wall with sink is attached to has patterned print, remainder is printed	Ground level - 2.4m	30m2	23	Assumed	ACM
20/05/2014		5 McLeod Road	Main House	ACM	Sheeting	Walls and ceiling to main bedroom	Good, painted	Ground level - 2.4m	40m2	24	Assumed	ACM
					-			Ground level to 2m on most walls, to				
20/05/2014		5 McLeod Road	Main House	ACM	Sheeting	Patterned walls to bathroom	Good, undamaged with patterned print surface	1.3m on one wall	15m2	25	Assumed	ACM
20/05/2014	Parcel 12	5 McLeod Road	Main House	ACM	Sheeting	Wall and ceiling to living room	Good, painted	Ground level - 3.5m	80m2	26	Assumed	ACM
20/05/2014	Parcel 12	5 McLeod Road	Brick Section	PCB	PCB	Fluorescent lights within brick section (5) and others external (3)	Good	2.4m above ground level	8	27	Assumed	PCB
				L								
20/05/2014	Parcel 12	5 McLeod Road	Brick Section	ACM	Sheeting		Unpainted but not damaged, some behind corrugated iron	Ground level - 2.4m	5m2	28	LP12-ACM-02	ACM
20/05/2014	Parcel 12	5 McLeod Road	Brick Section	ACM	Sheeting	Eaves to all sides of brick section, including back undercover section	Good, painted	2.4m above ground level	40m2	29	Assumed	ACM
20/05/2014		5 McLeod Road	Brick Section	ACM	Sheeting	Walls of shower room in brick section	Good, patterned print surface	At ground level - 3m	8m2	30	Assumed	ACM
20/05/2014	Parcel 12	5 McLeod Road	Brick Section	ACM	Zelemite	Ceiling to shower and toilet in brick section	Good, painted	3m above ground level	8m2	30	Assumed	ACM
20/05/2014	Parcel 12	5 McLeod Road	Brick Section	ACM	Sheeting	Ceiling to brick section	Unpainted, edges sealed, undamaged	3m above ground level	150m2	27	Refer to LP12-ACM-02	ACM
20/05/2014	Parcel 12	5 McLeod Road	Brick Section	N/A	Sheeting	Infill panels to former garage in brick section	Poor - damaged and unpainted	Ground level - 2m	10m2	31	LP12-ACM-3	NAD
20/05/2014	Parcel 12	5 McLeod Road	Brick Section	ACM	Zelemite	Backing board to power box attached to brick section	Drilled holes	1.6m above ground level	1m2	32	Field	ACM
		1	<u> </u>			1						+
			 					+	 		 	†
									 			+
		1	1	1		1		1			1	1

Glossary of Terms and Abbreviations Used in Registers

The following provides an explanation of terms and abbreviations used in the registers.

Location	The location within the building (e.g bathroom) and the use of the material (e.g. floor covering, soffit lining, pipe lagging)
ACM	Asbestos containing material
Bonded	Refers to ACM with its fibres firmly bound within the host media.
AC sheeting	Asbestos cement sheeting
Condition	Refers to the physical state or condition of the material in accordance with the following: Good – material shows no, or very minor damage and/or deterioration Fair – material shows signs of minor damage and/or deterioration Poor – material shows sign of significant damaged and/or deterioration or the material is partly or wholly unserviceable for its intended use.
Description	Description of the material identified e.g. vinyl tile, fibre cement sheeting etc.
Friable	ACM that may be crumbled pulverised or reduced to powder by hand pressure.
LBP	Lead based paint:
Result	Refers to result of ACM or LBP analysis.
	• For asbestos, this is the type identified during laboratory analysis. The three main commercial asbestos types found in Australia area: chrysotile (CH-white), amosite (Abrown or grey), and crocidolite (C-blue).
	NAD means no asbestos was detected during laboratory analysis.
	Materials shown as 'Refer to' have not been sampled but visually appear the same as other material previously sampled.
	'Assumed' refers to those materials not sampled (e.g. for safety reasons or restricted access) and which are not similar to previously sampled materials; or refers to paint that is assumed to be LBP due to building age and paint condition.
	'Field' means ACM where asbestos fibres identified in field but the type of asbestos not confirmed.
	'Potential' refers to fluorescent lights where it is assumed that PCBs are present due to their apparent age.
РСВ	Polychlorinated Biphenyls
Risk	Refers to the level of risk posed by the material based on its condition. friability, accessibility and other factors such as exposure to disturbance. The levels of risk adopted for the survey are Urgent (U), High (H), Medium (M) and low (L) as defined in Appendix C of this report.
SMF	Synthetic mineral fibre
Type of Material	The type of hazardous material (ACM, SMF, PCB or LBP).

Appendix C

Laboratory Certificates

ပ `
S
Ţ

HAIN OF CUSTODY

LS Laboratory: please tick →

GCLADSTONE 46 Callemondah Drive Clinton QLD 4680 Phr. 07 7471 5600 E. gladstone@alsglobal.com □BRISBANE 2 Byth Street Stafford OLD 4053 Ph: 07 3243 7222 E. samples.brisbane@alsglobal.com OADELAIDE 21 Burma Road Pooraka SA 5095 Ph; 08 8359 0890 E: adelaide@alsglobal.com

DMELBOURNE 2-4 Westall Road Springvale VIC 3171 Ph: 03 8549 9600 E: samples melbourne@alsglobal.com DMACKAY 78 Harbour Road Mackay <u>OLD 47</u>, Ph. 07 4944 0177 E: mackay@alsglobal.com

⊒MUDGEE 1/29 Sydney Road Mudgee NSW 2850 Ph: 02 6372 6735 E: mudgee.mail@alsglobal.com

□NEWCASTLE 5 Rose Gum Road Warabrock NSW 2304 Ph: 02 4968 9433 E. samples newcastle@alsglobal.com CNOWRA 4/13 Geary Place North Nowra NSW 2541 Ph: 02 4423 2063 E: nowra@alsglobal.com

DWOLLONGONG 99 Kenny Street Wollongong NSW 2500 Ph; 02 4225 3125 E: wollongong@alsglobal.com DTOWNSVILLE 14-15 Desma Court Bohle OLD 4818 Ph: 07 4796 0600 E: townesville environmental@atsglobal.com ⊔SYDNEY 277-289 Woodpark Road Smithfield NSW 2164 Ph: 02 8784 8555 E: samples.sydney@alsglobal.com

¥ ¥

□PERTH 10 Hod Way Malaga WA 6090 Ph: 08 9209 7655 E: samples.perth@elsglobal.com

õ ž RECEIVED BY: Xes χes FOR LABORATORY USE ONLY (Circle) Sandom Sample Temperature on Receipt: Free ice / frozen ice bricks present upon receipt? Custody Seal Intact? RELINQUISHED BY: Other comment: DATE/TIME: COC SEQUENCE NUMBER (Circle) 8 ~ RECEIVED BY: ĝΙ DATE/TJME: ç Ç ë. Non Standard or urgent TAT (List due date): ☐ Standard TAT (List due date): 4119/81 Theen RELINQUISHED BY: TURNAROUND REQUIREMENTS: Standard TAT may be longer for some tests COUNTRY OF ORIGIN: Australia Ultra Trace Organics) **SAMPLER MOBILE: 0408 386 663** PROJECT NO.: AS130348 ALS QUOTE NO.: CONTACT PH: 02 4962 5444 EDD FORMAT (or default): Email Reports to (will default to PM if no other addresses are listed): staylor@environcorp.com Email Invoice to (will default to PM if no other addresses are listed); klewis@environcorp.com PURCHASE ORDER NO.: COMMENTS/SPECIAL HANDLING/STORAGE OR DISPOSAL: PROJECT: Hydro Alumium Buffer Zone PROJECT MANAGER: Fiona Robinson COC Emailed to ALS? (YES / NO) CLIENT: ENVIRON Australia Pty Ltd SAMPLER: Shaun Taylor OFFICE: Newcastle ORDER NUMBER:

dilutions, or samples requiring specific QC analysis etc. Comments on likely contaminant levels, Additional Information **Environmental Division EN1402087** Work Order Newcastle ANALYSIS REQUIRED including SUITES (NB. Suite Codes must be listed to attract suite price) Where Metals are required, specify Total (unfiltered bottle required) or Dissolved (field filtered bottle required). × × TOTAL BOTTLES CONTAINER INFORMATION TYPE & PRESERVATIVE (refer to codes below) ω 8 MATRIX Ø S S DATE / TIME SAMPLE DETAILS MATRIX: Solid(S) Water(W) LP12-ACM-02 LP12-ACM-03 LP12-ACM-01 SAMPLE 1D ALS USE ONLY LABID 3 $\langle \cdot \rangle$

Telephone: +61240142500

Water Container Codes: P = Unpreserved Plastic; N = Nitric Preserved ORC = Nitric Preserved Soldium Hydroxide Preserved Plastic; AS = Soldium Hydroxide Preserved Plastic; AS = Not Vial Soldium Elsuphate Preserved Soldium Elsuphate Preserved Plastic; P = Formaldehyde Preserved Glass; A = HCI preserved Bottles; ST = Special Bottles; ST = Special Bottles; ASS = Plastic Bag for Acid Sulphate Soldium Preserved Bottles; ST = Special Bott TOTAL

Form Page 1 of 1

CERTIFICATE OF ANALYSIS

Work Order : **EN1402087** Page : 1 of 3

Client : ENVIRON AUSTRALIA PTY LTD Laboratory : Environmental Division Newcastle

Contact : FIONA ROBINSON Contact : Peter Keyte

Address : PO BOX 564 Address : 5/585 Maitland Road Mayfield West NSW Australia 2304

MAITLAND NSW, AUSTRALIA 2320

Telephone : +61 02 49344354 Telephone : 61-2-4968-9433
Facsimile : +61 02 49344359 Facsimile : +61-2-4968 0349

Project : AS130348 - HYDRO ALUMIUM BUFFER ZONE QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Order number : ----

C-O-C number : --- Date Samples Received : 18-JUN-2014

Sampler : SHAUN TAYLOR Issue Date : 25-JUN-2014

Site : ----

No. of samples received : 3

Quote number : SY/578/14 No. of samples analysed : 3

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Descriptive Results

NATA Accredited Laboratory 825

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Christopher Owler Team Leader - Asbestos Newcastle - Asbestos

Address 5/585 Maitland Road Mayfield West NSW Australia 2304 | PHONE +61 2 4014 2500 | Facsimile +61 2 4968 0349 Environmental Division Newcastle ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company

Page : 2 of 3 Work Order : EN1402087

Client : ENVIRON AUSTRALIA PTY LTD

Project : AS130348 - HYDRO ALUMIUM BUFFER ZONE

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

- EA200 Legend
- EA200 'Am' Amosite (brown asbestos)
- EA200 'Ch' Chrysotile (white asbestos)
- EA200 'Cr' Crocidolite (blue asbestos)
- EA200 'Trace' Asbestos fibres detected by trace analysis per AS4964. The result can be interpreted that the sample contains detectable 'respirable' asbestos fibres
- EA200: 'UMF' Unknown Mineral Fibres. "-" indicates fibres detected may or may not be asbestos fibres. Confirmation by alternative techniques is recommended.
- EA200: Asbestos Identification Samples were analysed by Polarised Light Microscopy including dispersion staining.
- EA200: Negative results for vinyl tiles should be confirmed by an independent analytical technique.

Page : 3 of 3 Work Order : EN1402087

Client : ENVIRON AUSTRALIA PTY LTD

Project : AS130348 - HYDRO ALUMIUM BUFFER ZONE

Analytical Results

Sub-Matrix: SOLID (Matrix: SOIL)		Cli	ent sample ID	LP12-ACM-01	LP12-ACM-02	LP12-ACM-03	
	C	lient sampli	ing date / time	18-JUN-2014 15:00	18-JUN-2014 15:00	18-JUN-2014 15:00	
Compound	CAS Number	LOR	Unit	EN1402087-001	EN1402087-002	EN1402087-003	
EA200: AS 4964 - 2004 Identification	on of Asbestos in bulk	samples					
Asbestos Detected	1332-21-4	0.1	g/kg	No	Yes	No	
Asbestos Type	1332-21-4	-		-	Ch	-	
Sample weight (dry)		0.01	g	1.01	0.25	2.50	
APPROVED IDENTIFIER:		-		C.OWLER	C.OWLER	C.OWLER	

Analytical Results Descriptive Results

Sub-Matrix: SOLID

Method: Compound	Client sample ID - Client sampling date / time	Analytical Results
EA200: AS 4964 - 2004 Identification of Asbe	estos in bulk samples	
EA200: Description	LP12-ACM-01 - 18-JUN-2014 15:00	One piece of organic fibre board approximately 20 x 20 x 3mm
EA200: Description	LP12-ACM-02 - 18-JUN-2014 15:00	One piece of bonded asbestos fibre board approximately 10 x 5 x 3mm
EA200: Description	LP12-ACM-03 - 18-JUN-2014 15:00	Four pieces of organic fibre board approximately 20 x 15 x 4mm

QUALITY CONTROL REPORT

Work Order : **EN1402087** Page : 1 of 4

Client : ENVIRON AUSTRALIA PTY LTD Laboratory : Environmental Division Newcastle

Contact : FIONA ROBINSON Contact : Peter Keyte

Address : PO BOX 564 Address : 5/585 Maitland Road Mayfield West NSW Australia 2304

MAITLAND NSW, AUSTRALIA 2320

 Telephone
 : +61 02 49344354
 Telephone
 : 61-2-4968-9433

 Facsimile
 : +61 02 49344359
 Facsimile
 : +61-2-4968 0349

Project : AS130348 - HYDRO ALUMIUM BUFFER ZONE QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Site : ----

 C-O-C number
 : --- Date Samples Received
 : 18-JUN-2014

 Sampler
 : SHAUN TAYLOR
 Issue Date
 : 25-JUN-2014

Order number ----

No. of samples received : 3

Quote number : SY/578/14 No. of samples analysed : 3

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Quality Control Report contains the following information:

NATA Accredited

Laboratory 825

Accredited for

compliance with

ISO/IEC 17025.

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out ir compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Christopher Owler Team Leader - Asbestos Newcastle - Asbestos

Address 5/585 Maitland Road Mayfield West NSW Australia 2304 | PHONE +61 2 4014 2500 | Facsimile +61 2 4968 0349 Environmental Division Newcastle ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company

Page : 2 of 4 Work Order : EN1402087

Client : ENVIRON AUSTRALIA PTY LTD

Project : AS130348 - HYDRO ALUMIUM BUFFER ZONE

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Page : 3 of 4
Work Order : EN1402087

Client : ENVIRON AUSTRALIA PTY LTD

Project : AS130348 - HYDRO ALUMIUM BUFFER ZONE

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR:-No Limit; Result between 10 and 20 times LOR:-0% - 50%; Result > 20 times LOR:-0% - 20%.

• No Laboratory Duplicate (DUP) Results are required to be reported.

Page : 4 of 4 Work Order : EN1402087

Client : ENVIRON AUSTRALIA PTY LTD

Project : AS130348 - HYDRO ALUMIUM BUFFER ZONE

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

• No Method Blank (MB) or Laboratory Control Spike (SCS) Results are required to be reported.

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs), Ideal recovery ranges stated may be waived in the event of sample matrix interference.

No Matrix Spike (MS) Results are required to be reported.

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

The quality control term Matrix Spike (MS) and Matrix Spike Duplicate (MSD) refers to intralaboratory split samples spiked with a representative set of target analytes. The purpose of these QC parameters are to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs), Ideal recovery ranges stated may be waived in the event of sample matrix interference.

• No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.

INTERPRETIVE QUALITY CONTROL REPORT

Work Order : **EN1402087** Page : 1 of 5

Client : ENVIRON AUSTRALIA PTY LTD Laboratory : Environmental Division Newcastle

Contact : FIONA ROBINSON Contact : Peter Keyte

Address : PO BOX 564 Address : 5/585 Maitland Road Mayfield West NSW Australia 2304

MAITLAND NSW, AUSTRALIA 2320

Telephone : +61 02 49344354 Telephone : 61-2-4968-9433
Facsimile : +61 02 49344359 Facsimile : +61-2-4968 0349

Project : AS130348 - HYDRO ALUMIUM BUFFER ZONE QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Site : ----

C-O-C number : ---- Date Samples Received : 18-JUN-2014

Sampler : SHAUN TAYLOR Issue Date : 25-JUN-2014

Order number : ----

No. of samples received : 3

Quote number : SY/578/14 No. of samples analysed : 3

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Interpretive Quality Control Report contains the following information:

- Analysis Holding Time Compliance
- Quality Control Parameter Frequency Compliance
- Brief Method Summaries
- Summary of Outliers

Page : 2 of 5 Work Order : EN1402087

Client : ENVIRON AUSTRALIA PTY LTD

Project : AS130348 - HYDRO ALUMIUM BUFFER ZONE

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with recommended holding times (USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: **SOIL** Evaluation: ▼ = Holding time breach; ✓ = Within holding time.

						o.ugo		o.ago	
Method		Sample Date	Ex	traction / Preparation		Analysis			
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
EA200: AS 4964 - 2004 Identification of	Asbestos in bulk samples								
Snap Lock Bag (EA200) LP12-ACM-01,	LP12-ACM-02,	18-JUN-2014		15-DEC-2014		25-JUN-2014	22-DEC-2014	√	
LP12-ACM-03									

Page : 3 of 5 Work Order : EN1402087

Client : ENVIRON AUSTRALIA PTY LTD

Project : AS130348 - HYDRO ALUMIUM BUFFER ZONE

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(where) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix:

Evaluation: * = Quality Control frequency not within specification; * = Quality Control frequency within specification.

					. Quanty 00	intro in oquono, inc	t maint opcomodation; quanty contact negatives maint opcomodation.
Quality Control Sample Type	Count		Rate (%)			Quality Control Specification	
Analytical Methods	Method	QC	Regular	Actual	Expected	Evaluation	

Page : 4 of 5 Work Order : EN1402087

Client : ENVIRON AUSTRALIA PTY LTD

Project : AS130348 - HYDRO ALUMIUM BUFFER ZONE

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Asbestos Identification in bulk solids	EA200	SOIL	AS 4964 - 2004 Method for the qualitative identification of asbestos in bulk samples

Page : 5 of 5 Work Order : EN1402087

Client : ENVIRON AUSTRALIA PTY LTD

Project : AS130348 - HYDRO ALUMIUM BUFFER ZONE

Summary of Outliers

Outliers: Quality Control Samples

The following report highlights outliers flagged in the Quality Control (QC) Report. Surrogate recovery limits are static and based on USEPA SW 846 or ALS-QWI/EN/38 (in the absence of specific USEPA limits). This report displays QC Outliers (breaches) only.

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

- For all matrices, no Method Blank value outliers occur.
- For all matrices, no Duplicate outliers occur.
- For all matrices, no Laboratory Control outliers occur.
- For all matrices, no Matrix Spike outliers occur.

Regular Sample Surrogates

• For all regular sample matrices, no surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

This report displays Holding Time breaches only. Only the respective Extraction / Preparation and/or Analysis component is/are displayed.

No Analysis Holding Time Outliers exist.

Outliers: Frequency of Quality Control Samples

The following report highlights breaches in the Frequency of Quality Control Samples.

No Quality Control Sample Frequency Outliers exist.

Date of Audit	Sector/ Area	D	Building Name/ No.	Type of Haz Mat	Form of Haz Mat	Location	Description/ Condition	Accessibility	Est. Quantity	Photo Ref	Sample No.	Result
Date of Audit	Sector/ Area	Property Address	building Name/ No.	iviat	Form of Haz Wat	Location	Description/ Condition	Accessibility	est. Quantity	Photo Rei	sample No.	Result
20/05/2014	Parcel 12	1 McLeod Road	House	ACM	Sheeting	Exterior walls to front and eastern sides (main house is weatherboard), including corner moulding	Fair, painted (some peeling) and minor damage	Ground level - 3m	200m2	1	Field	ACM
20/05/2014	Parcel 12	1 McLeod Road	House	ACM	Sheeting	Eaves to all sides (both extension and weatherboard section)	Fair - good, painted	3m - 5m above ground level	60m2	2	Assumed	ACM
						Used as edge between garden bed and under house along front and west side of house, and east wall of						
20/05/2014		1 McLeod Road	House	ACM	Corrugated sheeting	Unit 1A	Poor	Ground level	15m2	3	Field	ACM
20/05/2014		1 McLeod Road	House	ACM	Sheeting	Walls and ceiling to main/ front bedroom	Good, painted and no damage	Ground level - 3m	70m2	4	Assumed	ACM
20/05/2014		1 McLeod Road	House	ACM	Sheeting	Walls and ceiling to kid's bedroom	Good, painted and no damage	Ground level - 3m	50m2	5	Assumed	ACM
20/05/2014		1 McLeod Road	House	ACM	Sheeting	Walls to laundry	Fair, painted bu minor damage	Ground level - 2.4m	20m2	6	Field	ACM
20/05/2014		1 McLeod Road	House	ACM	Sheeting	Walls and ceiling to Games Room	Good, painted and no damage	Ground level - 2.4m	40m2	7	Assumed	ACM
20/05/2014	Parcel 12	1 McLeod Road	House	PCB	PCB	Ceiling to Games Room	Good	2.4m above ground level	1	7	Assumed	PCB
20/05/2014	Parcel 12	1 McLeod Road	House	ACM	Sheeting	Walls and ceiling to bathroom	Painted above 1.8m, below is the patterned print sheeting	Ground level - 3m	30m2	8	Assumed	ACM
20/05/2014	Parcel 12	1 McLeod Road	House	ACM	Sheeting	Panels to the sides and above the back door	Fair, painted and minor damage	Ground level - 2.2m	10m2	9	Field	ACM
20/05/2014	Parcel 12	1 McLeod Road	House	ACM	Sheeting	Side panels to back door landing awning	Good, painted (outer side)	2m above ground level	2m2	10	Field	ACM
20/05/2014	Parcel 17	1 McLeod Road	House	ACM	Sheeting	Walls and ceiling to dining area (excluding fire place	Good, painted or wallpapered	Ground level - 2.4m	70m2	N/A	Assumed	ACM
20/05/2014		1 McLeod Road	House	ACM	Sheeting	Walls to living room	Good, painted or wallpapered Good, painted or wallpapered	Ground level - 2.4m	70m2 60m2	11	Assumed	ACM
20/05/2014		1 McLeod Road 1 McLeod Road	Garage	N/A	Sheeting Sheet (Hardiplank)	Walls to living room Exterior walls to garage	Good, painted or wallpapered Fair, painted with some minor damage	Ground level - 2.4m	150m2	11	LP12-ACM-01	NAD
20/05/2014	Parcei 12	1 MCLEOD ROAD	Garage	N/A	sneet (nardiplank)		Fair - painted but peeling, some damage including corner	Ground level - 2.4m	150m2	12	LP12-ACM-01	NAD
20/05/2014	Parcel 12	1 McLeod Road	Unit 1A	ACM	Sheeting	Exterior walls to Unit 1A	moulding	Ground level - 3m	150m2	13	Field	ACM
20/05/2014	Parcel 12	1 McLeod Road	Unit 1A	ACM	Zelemite	2 xpower boxes near front door to Unit 1A	Drilled holes	1.6m above ground level	2m2	14	Field	ACM
20/05/2014	Parcel 12	1 McLeod Road	Unit 1A	ACM	Sheeting	Walls and ceiling to bathroom area	Good, painted	Ground level - 2m	30m2	15	Assumed	ACM
20/05/2014	Parcel 12	1 McLeod Road	Unit 1A	PCB	PCB	Fluorescent light in bathroom area	Good	2m above ground level	1	15	Assumed	PCB
20/05/2014	Parcel 12	1 McLeod Road	Unit 1A	ACM	Sheeting	Walls and ceiling to entrance room	Good, painted	Ground level - 2.4m	25m2	16	Field	ACM
20/05/2014	Parcel 12	1 McLeod Road	Unit 1A	ACM	Sheeting	Front panel to the front door (attached to timber frame)	Good, painted	Ground level - 2m	4m2	17	Assumed	ACM
20/05/2014	Parcel 12	1 McLeod Road	Unit 1A	PCB	PCB	Fluorescent light in main living area	Good	2m above ground level	1	18	Assumed	PCB
20/05/2014	Parcel 12	3 McLeod Road	House	ACM	Sheeting (Hardiplank)	Exterior walls to the house	Fair, painted but some damage	At ground level - 3,5m	180m2	19 and 20	Field	ACM
20/05/2014	Parcel 12	3 McLeod Road	House	ACM	Sheeting	Gable end to front of house	Good, painted	3m - 5m above ground level	10m2	19	Assumed	ACM
20/05/2014	Parcel 12	3 McLeod Road	House	ACM	Sheeting	Eaves to house	Good, painted	3m - 5m above ground level	10m2	19	Assumed	ACM
20/05/2014	Parcel 12	3 McLeod Road	Large shed	PCB	PCB	Fluorescent lights - shed is built 2002 but lights appear old	Good	3.5m above ground level	6	21	Assumed	PCB
20/05/2014	Parcel 12	5 McLeod Road	Main House	ACM	Sheeting	Eaves to all sides	Good, painted	2.4m above ground level	30m2	22	Assumed	ACM
20/05/2014	Parcel 12	5 McLeod Road	Main House	ACM	Sheeting	Gable ends under corrugated vinyl veneer	Unknown - protected by veneer	4 - 10m above ground level	80m2	22	Assumed	ACM
						Exterior walls to main house beneath veneer panels (assumed it is on all walls, section of ACM found and						
20/05/2014	Parcel 12	5 McLeod Road	Main House	ACM	Sheeting	field confirmed)	Unknown - protected by veneer	Ground level - 3m	300m2	22	Field	ACM
20/05/2014	Parcel 17	5 McLeod Road	Main House	ACM	Sheeting	Ceiling and walls to front room (with sink)	Good - bottom section of wall with sink is attached to has patterned print, remainder is printed	Ground level - 2.4m	30m2	23	Assumed	ACM
20/05/2014		5 McLeod Road	Main House	ACM	Sheeting	Walls and ceiling to main bedroom	Good, painted	Ground level - 2.4m	40m2	24	Assumed	ACM
					-			Ground level to 2m on most walls, to				
20/05/2014		5 McLeod Road	Main House	ACM	Sheeting	Patterned walls to bathroom	Good, undamaged with patterned print surface	1.3m on one wall	15m2	25	Assumed	ACM
20/05/2014	Parcel 12	5 McLeod Road	Main House	ACM	Sheeting	Wall and ceiling to living room	Good, painted	Ground level - 3.5m	80m2	26	Assumed	ACM
20/05/2014	Parcel 12	5 McLeod Road	Brick Section	PCB	PCB	Fluorescent lights within brick section (5) and others external (3)	Good	2.4m above ground level	8	27	Assumed	PCB
				L								
20/05/2014	Parcel 12	5 McLeod Road	Brick Section	ACM	Sheeting		Unpainted but not damaged, some behind corrugated iron	Ground level - 2.4m	5m2	28	LP12-ACM-02	ACM
20/05/2014	Parcel 12	5 McLeod Road	Brick Section	ACM	Sheeting	Eaves to all sides of brick section, including back undercover section	Good, painted	2.4m above ground level	40m2	29	Assumed	ACM
20/05/2014		5 McLeod Road	Brick Section	ACM	Sheeting	Walls of shower room in brick section	Good, patterned print surface	At ground level - 3m	8m2	30	Assumed	ACM
20/05/2014	Parcel 12	5 McLeod Road	Brick Section	ACM	Zelemite	Ceiling to shower and toilet in brick section	Good, painted	3m above ground level	8m2	30	Assumed	ACM
20/05/2014	Parcel 12	5 McLeod Road	Brick Section	ACM	Sheeting	Ceiling to brick section	Unpainted, edges sealed, undamaged	3m above ground level	150m2	27	Refer to LP12-ACM-02	ACM
20/05/2014	Parcel 12	5 McLeod Road	Brick Section	N/A	Sheeting	Infill panels to former garage in brick section	Poor - damaged and unpainted	Ground level - 2m	10m2	31	LP12-ACM-3	NAD
20/05/2014	Parcel 12	5 McLeod Road	Brick Section	ACM	Zelemite	Backing board to power box attached to brick section	Drilled holes	1.6m above ground level	1m2	32	Field	ACM
		1	<u> </u>			1						+
			 					+	 		 	†
									 			+
		1	1	1		1		1			1	1

				Type of Haz								
Date of Audit	Sector/ Area	Property Address	Building Name/ No.	Type of Haz Mat	Form of Haz Mat	Location	Description/ Condition	Accessibility	Est. Quantity	Photo Ref	Sample No.	Result
	 											
	 											
					-			-				
-												
-	 											-
-	 											
	<u> </u>											1
-												
-	 											-
<u> </u>			<u> </u>									<u> </u>

				Type of Haz								
Date of Audit	Sector/ Area	Property Address	Building Name/ No.	Type of Haz Mat	Form of Haz Mat	Location	Description/ Condition	Accessibility	Est. Quantity	Photo Ref	Sample No.	Result
	 											
	 											
					-			-				
-												
-	 											-
-	 											
	<u> </u>											1
												
-	 											-
<u> </u>			<u> </u>									<u> </u>

				Type of Haz								
Date of Audit	Sector/ Area	Property Address	Building Name/ No.	Type of Haz Mat	Form of Haz Mat	Location	Description/ Condition	Accessibility	Est. Quantity	Photo Ref	Sample No.	Result
	 											
	 											
					-			-				
-												
-	 											-
-	 											
	<u> </u>											1
-												
-	 											-
<u> </u>			<u> </u>									<u> </u>

	Type of Haz												
Date of Audit	Sector/ Area	Property Address	Building Name/ No.	Type of Haz Mat	Form of Haz Mat	Location	Description/ Condition	Accessibility	Est. Quantity	Photo Ref	Sample No.	Result	
	 												
	 												
-													
-	 											-	
-	 												
	<u> </u>											1	
												 	
-	 											-	
<u> </u>			<u> </u>									<u> </u>	

	Type of Haz												
Date of Audit	Sector/ Area	Property Address	Building Name/ No.	Type of Haz Mat	Form of Haz Mat	Location	Description/ Condition	Accessibility	Est. Quantity	Photo Ref	Sample No.	Result	
	 												
	 												
-													
-	 											-	
-	 												
	<u> </u>											1	
												 	
-	 											-	
<u> </u>			<u> </u>									<u> </u>	

	Type of Haz												
Date of Audit	Sector/ Area	Property Address	Building Name/ No.	Type of Haz Mat	Form of Haz Mat	Location	Description/ Condition	Accessibility	Est. Quantity	Photo Ref	Sample No.	Result	
	 												
	 												
-													
-	 											-	
-	 												
	<u> </u>											1	
												 	
-	 											-	
<u> </u>			<u> </u>									<u> </u>	

Date of Audit	Sector/ Area	Property Address	Type of Haz Mat	Form of Haz Mat	Location	Description/ Condition	Accessibility	Est. Quantity	Photo Ref	Sample No.	Result